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1. General Remarks.

During the Period November 1, 1982 to October 31, 1983, the

Princinal Investigator, in cooperation with several research

assistants, carried out a mrox'ram of mathematical research in

- -~the general area of control theory of Partial differential eoua-

tions and began the o~eration of the Modelling, Information 'roces-

sing and Control Facility here at the University of Wisconsin,

whose initial eouivment acquisitions and continuing operation have

- been funded, in Dart, by AFOSR under Grant 79-0018'. The nroram

now involves three distinct nhases, all of which are under some

degree of development. There is the fundamental nrogram of research

on the control theory of distributed Parameter systems and the re-

lated Drogram of research on self-excited oscillations related to

. flutter Phenomena, the specific research nrogram aimed at the dev-

eloDment and improvement of control and identification strategies

in connection with wing flutter Problems, and the new area of distri-

buted parameter model develonment and calibration in connection

with the MIPAC facility just described.

During the period just noted our work has resulted in two scien-

tific papers which form the greater part of this renort. The first

of these, "The Dirichlet-Neumann Boundary Control Problem Associated

with Maxwell's Equations in a Cylindrical Region" has been developed

in connection with the first nhase of our research prorram and was

presented to the IEEE Conference on Decision and Control in December,

1983. The Principal Investigator is being assisted in further

,-'oIm'" ''" " '-" , , ' ',"" ". ". ,_, .",":-. ,-."" " - -. -.. .-. .-. . .. .-'"" " " " " --. . -., '- -.- --. .-.. .-,,
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develonment of this line of research by Research Assistant Katherine

Kime.

The second naner, "Dual Paley-Wiener Snaces and "Regular"

Nonharmonic Fourier Series" is an outgrowth of earlier work on

the problem of closed loon eigenvalue snecification in distributed

parameter systems of hyperbolic type. Research Assistant Helen

Baron, who has been nartially sunnorted under this grant, is conti-

nuing work in this area in connection with other classes of distri-

buted parameter systems.

In addition to those already mentioned, Research Assistants

Richard Rebarber and Robert Acar have received nartial sunnort

under this grant and are continuing work in the areas of relative

controllability of distributed narameter systems and coefficient

identification in distributed parameter systems, respectively.

Comnutational studies nerformed with the UW MACC 1110 Computer

and funded under this grant have enabled us to develop a new and

effective procedure for identification of the neriod of an oscil-

latory disturbance, paving the way for adaptive control of certain

flutter phenomena.
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2. Technical Annendices.

The remainder of this renort consists of two technical anren-

dices as follows:

Aunendix I: The Dirichlet-Neumann Boundary Control Problem
Associated with Maxwell's Eauations in a CYlin-
drical Region

Annendix II: Dual Paley-Wiener Snaces and "Regular" Nonharmonic
Fourier Series

Both of these are authored by the Principal Investigator.
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APPENDIX I

The Dirichlet-Neumann Boundary Control

Problem Associated with .saxwell's

Eauations in a Cylindrical Region

This work was also sunoorted in rart by the Army Research

Offije under Contract DAAG29-80-C'-OO41.
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SIGNIFICANCE AND EXPLANATION

This paper concerns the controllability of the Maxwell electromagnetic

equations in a cylindrical spatial region by means of controlling currents

caused to flow on the boundary of the region. Here controllability refers to

the ability to transfer from electric and magnetic fields, given at the

initial instant, to corresponding fields prescribed at a later instant.

Studies of this type are significant in relation to wave guides, EM-pulse

.-'-. devices, radar non-relective (stealth) aircraft, controlled thermonuclear

fusion and many other important applications.
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THE DIRICHLET-NEUANN BOUNDARY CONTROL PROBLEM ASSOCIATED

. ITH MAXWELL'S EQUATIONS IN A CYLINDRICAL EGTON

D. L. Russell

I. BACKGROUND.

In this paper we consider a region C C R 3, not necessarily bounded, having piecewise

-. ' smooth boundary F and almost everywhere uniquely defined unit exterior normal vector

S"-V v(x,yz), (x,y,z) e r. It is assumed that the region 0 is occupied by a medium

having constant electrical permitivity C and constant magnetic permeability i. We have

then, in 0, the paired electric and magnetic fields

E E(x,yz,t) ,

H - H(x,y,z,t) ,

having finite energy

R(t) =1/2111 (Caka 2 +v , (.,)

where I I denotes the usual Euclidean norm in R 3 . As is well known ((4], [9)), and

H satisfy, in $1, Maxwell's equations

* E
curl H = e (1.2)

a HM
curl E - , (1.3)

div E = p , (1.4)

div H 0 , (1.5)

where p = P(x,y,z,t) is the electrical charge density in n - which is zero throughout

this paper. (That equation (1.5) might eventually have to be modified to account for

magnetic monopoles will trouble us not at all here[)

NJ
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Control problems associated with Maxwell's equations have been of inturest primarilY

in connection with nuclear fusion applications - in which case p is not identically equal

to zero and the Maxwell equations are coupled with the dynamical equations governing the

plasma evolution. In this connection we cite the work of P. K. C. Wang [29], [30], [31].

The paint of view which we take here is that we cannot hope tQ treat these more complicated

problems until we have a firmer grasp on the control theory of Maxwell's system in its own

right. In this direction some work on controllability with control influence distributed

throughout Q has been carried out by G. Chen (2), (3]. We are primari'y concerned here

with the possibility of influencing the evolution of the fields P and A by means of an

externally determined current 
3 (xyz,t) flowing tangentially in r so that

.(xyZt). (x,y,z) = (1.6)

for (x,y,z) e r where V(x,y,z) is defined. We will assume that the normal component of

'.4. vanishes outside 0 and that no charge is permitted to accumulate on F. Then we have

the boundary conditions (see e.g. (41, [281)

%(x,y,z,t)-*(x,y,z) = 0 (1.7)

A (x,y,z,t) = *(x,y,z) x 3(x,y,z,t) (1.81

for (x,y,z) e r such that V(x,y,z) is well-defined. Here, and subsequently, the

subscript T refers to the component of the vector in question which is tangential to r.

Similarly, the subscript V will denote the normal component (thus (1.7) is the same as

0). writing

v = on r,

T

V T

we see that (1.8) becomes pH VX 3, so that K is a vector tangential to r and

perpendicular to 3 = 3

0The state space in which we study solutions of the above system will be denoted by

H (n); it is a closed subspace of the space HE(0) of squaro integrable six-

dimensional fields (P(x,y,z,t), H(x,y,zt)) with the inner product and norm

~-2-
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Clearly H ((l) is a real Hilbert space with this inner product. Where a complex space is

required, we employ conjugation as usual. The state space HEd(() is the closed span in

H (Q) of those continuously differentiable fields (E(x,yz,t), H(x,y,z,t)) for which

aH aH aH
+ z

div H - + + 0a y az

if 0,0 and EHI1 are two smooth solution pairs for (1.2)-(1.5), (1.7), (1.8),

the first corresponding to 3 0 on r, we see easily that

d +.. 4
at <(E 0 ;0  (1 1' )>

aE1 o -4 1, 30o
a- , E + at + . 1])dv

ff(c[+O at T t at t1d

(using (1.2), (1.3)) =

-. (P*E curl H 1 curl E 0 * H1 + curl H curl E 1)dv

(using div (E x H) curl • - • curl t)

- fff [div( * x ) div( 1  x H )]dv

- ff (*E0 " + 4 E N Ho) • ,ds (using (1.7))

r

-f J O CE IT + OT x A IV + IT x Ait + *v Vds

.:
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r

- (using (1.8) and noting that J 0 for 0

- I (O 3 )ds . (1.10)
r

If we go through the same computation with k 0 'A 0 both replaced by the same E-,

satisfying (1.2)-(1.5), (1.7), (1.8) we find that

d.. (Ax) ds -ff A
3

ds . (1.11)
.'',."dt T

r r

-4 For E 0 generalized solutions of (1.2)-(I.5), (1.7), (1.8) can be discussed in the

* .%, p general context of partial differential equations and strongly continuous semigroups. The

* 4' generator

0 A(.) " curl , - curl (1.12)mC

with domain consisting of M in the Sobolev space ,1(f)(=H (0r) H (n)) having9 ,' d"Bz

zero divergence and satisfying (cf. (1.7), (1.8))

0' A 0 *(1.13). .. vr r

is antisymmetric and generates a group of isometries in HEd (9). (See (321, [331, (341

- . for related work.) Sufficient conditions on I so that solutions of the inhomogeneous

%system (1.2)-(1.5), (1.7), (1.8) lie in H (,d() and are strongly continuous there may be

obtained much as in [181, [191 but it is not easy to specify necessary and sufficient

% conditions. Indeed, this is already difficult for the much simpler, but related, wave

equation
32w  32w + 3 2w

3t2  ax 32 ay 2  3z2

with boundary forcing terms. We will make some comments related to this in Section 6.

@-4-
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2. CONTROL PROBLEMS TN A CYLINDRICAL REGION

The main point in this paper is to study the question of controllability of the

electromagnetic field PA by means of the boundary current T .S By controllability

we mean the possibility of transferring an initial field A(x,y,z,0), A(x,y,z,o) e

H d(9), given at time t - 0, to a prescribed terminal field E(x,y,z,T),

* . .NH(xy,z,T) e H M,d(f), specified at t - T > 0, by means of a suitable control current

-(x,y,z,t) defined for (xy,z) e r, t e (0,T]. Because the homogeneous Maxwell

equations correspond to a group of isometries in HE,d(), it is enough to consider the

special case wherein

.(x,y,z,0) 0 , (2.1)

:(XyZ,0) S 0 . (2.2)

For a given space, J, of admissible control currents 3(x,y,z,t) = ST(x,y,z,t) definedT

on r x (0,T] we define the reachable set R(T,J) to be the subspace of H (a()
E,d

consisting of states reachable from the zero initial state using controls I e J.

* Following earlier definitions ([8], [26]), our system is approximately controllable in

time T if R(T,J) is dense in H 9(, ) and exactly controllable in time T if

R(T,J) - H ,d(11) (or some precisely designated subspace of HEd(l)).

At this writing we are not able to discuss the general three dimensional problem

wherein the vector fields E and A are unrestricted, except as stipulated heretofore,

and SI has a general geometry. We hope in later work to consider at least some three

dimensional cases which arise for special domains a. But for now we must content

ourselves with the case in which n is a cylinder:

2
( = R X (-,) {(x,y,z)l(x,y) e R C R , z real)

where R is an open connected region in R
2 

with piecewise smooth boundary B. Thus

M = 3R x (-,=) = B x

Even here we can give results only for special two dimensional regions R.

The two dimensional problem in the cylinder (2 R x (-i,) occurs when we confine

%J attention to fields

E E(x,y,t), H =H(x,y,t)
b'.-5-
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which do not depend on the coordinate z corresponding to the axial, or longitudinal,

direction of the cylinder. (Note that this is not at all the same thing a3 requiring

that Ez, Hz, the field components in the z direction, should be zero.) We

correspondingly consider only control currents

J J(x,y,t)

which do not depend upon z.

Of course the energy 8 in 9 is infinite under the above circumstances if , A

are not identically zero. We redefine H to be the energy per unit length of cylinder:

E(t) =1/2f / (I(x,y,t)I 2 + uIA(x,yt)1
2 
)dxdy (2.3)

R

The space HEd (0) is now replaced by HEd(R). Because

(x,y,t) (xyt)
z 0

we have

aE 3 
3H aH

div E ~- a yY div X + - (2.4)x ay ax 3y

The curl expressions simplify to

-.- aE aE 3E 3E
curl A ( Z z y X)

ay - x ' 3x Y

K:-:'cur - , 7 x a

so that the equations (1.2), (1.3) become

3E a (H) 3Hx E Z

at ay at y

aE 3H 3H ,E
%:y _! y = 12.5)

at ax at ax

3E 3H H )H7 E Ex

t ax ay (vi) at ax +y

-6-
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It is clear from (2.5), (i)-(vi), that if E(x,y,0), H(x,y,0) are given, then the

- subsequent evolution of E (x,/,t!, H,(x,y,t) determine all of the other components. As

for these components tnemselves, differentiatinc '2.5) (iii) and (2.5) (vi) with respect

to t and then substituting (2.5) (iv), (v) and (2.5) (i), (i) into the respectively

resulting expressions, we obtain the familiar wave equations

a2E  2 E 2Ez z z
;t2 x2 + y a i c (2.6)

x 2 + (2.7)2  2

valid for (x,y) e R, t e [0,-), provided Ez, Hz  have enough derivatives, or provided

the equations are interpreted in the distributional sense. Assuming the initial states

t(x,y,0), H(x,y,0) are divergence-free, we compute (cf. (2.4))

3E 3E
"4t x '

+ 
a =Y (using (2.5) (1), (11))

a 2H  a 2H

___ - Z)=0

and similarly

aM 3MH =U (a-x + y 0

and we conclude that the fields remain divergence-free for all time.

Suppose, then, that divergence-free initial states t(x,y,0), H(x,y,0 ) are given.

Then Ez[x,y,O), Hz(x,y,0) are known and (2.5) (iii), (vi) determine a t x,y,0) and

3H1
at (x,y,0). If (2.6), (2.7) are then solved with these initial conditions, and

appropriate boundary conditions, the complete solution of Maxwell's equations (2.5)

(i)-(vi), can he obtained by integrating (2.5) (i), (ii), (iv), (v). Thus it is enough to

work with (2.6), (2.7), and it should be noted that the divergence condition does not have

any bearing on Ez' Hz; it can be ignored henceforth.

-7-
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Vx 3 X x V X ( + 3 j -- + 3 (2.9)
T z 0 z a

Combining (1.8), (2.8), (2.9) we see that on 8

H (x,y,t) = J (xyt) , (2.10)
z a

H a (x,y,t) = -J z(X,y,t) . (2.11)

Represent V, 0 as

V = Vt +V , (2.12)
x-y

S.-. + Oyn y t+Vx n(.3

Then compute

3E 3E 3E
S- v + z V (using (1.3) , (2.13)3v ax x 3y y

3H y H 3Ha y Tt x T0_

z(using (2.11)) t (2.14)

The equations (2.10), (2.14) provide the needed boundary conditions for (2.6), (2.7)

respectively. For Hz  we have the Dirichlet-type boundary condition (2.10) while for

EZ  we have the Neumann-type boundary condition (2.14). If we let

U(x,y,t) - (xyt)

=... + U

and differentiate (2.10), we have the more symmetric form

3H 3
z (Xyt) U (xyt), z -Uz(x,y,t), (x,y) e B • (2.15)

We complete this section by discussing the question of expression of the energy per

unit cylinder length, (2.3), solely in terms of Hz  and Ez .

We consider the equations (2.6), (2.7) with homogeneous boundary conditions

3H 3E
"" (x,y,t) - 0, - (x,y,t) - 0, (x,y) e B

-9-

:.4-.



We use the symbol A for the Laplacian:

32 2

ax
2  ay

2

Initially we take H, Ez  to lie in the Soholev space H CR). This space must be

decomposed in order to attach a meaning to -

* .The boundary condition for H. may be rewritten as

'--,.yt) - h(xy), (xy) e B

where, by the trace theorem, h e H3/
2
(D). Then we can write

Hz(X,yt) H (x,y,t) + R (X,y)

where H (xy) is the solution of

A" z (x,y) * 0, H z(x,y) h(xy), (xy) e B

and

H (x,y,t) - 0, (x,y) e B

The inverse Laplacian A is well defined on the functions Hz For Ez  we may write

Ez(X,y,t) - E z(xy,t) + z (t)

* where SZ' as indicated, is constant with respect to (x,y) e R and

f Ez(x,y,t)ds = 0

it is well known that A is well defined on the functions E
z

We proceed first on the assumption that

Hz(xyt) -H (x,y,t), Ez(X,y,t )  (x,y,t)

We form new solutions of (2.6), (2.7) by setting

3G aG
z -Ez, Hz 0

at at

-. ol
ae 3
-1 z -1

G CA ~- F~zpa T

We then determine Gx, Gyf Fx, Fy, using the equations (2.5) with replacing A,

replacing , so that and satisfy Maxwell's equations:

.-".,

" .4.',
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-ctr F

at

It will then be found that

E curl F, H =curl

Following this, (2.3) can be written as

8(t) =1/211 (Eicurl h 2 + UlcurI 612 )dxdy
R

3F 2 3F 2 3F -F 2

R

3G 2 3G 2 3G aG 2
+ [ x' + (~-E ay (ax - ay x) ]dxdy (2.16)

Then from (2.16) we have

3F 2 3F 2 2G 2
E(t) 12f1 Ic[(a-') + (a) + (P at)

3G 2 3G 2 3F 2

+IF(3' + (y') + ( ,) dd

.4~4 R

FG 2 F 2

+ u[( 3G2 + 3G) + (H 2 ]dxdy

Now consider the quadratic form (for Ez =
z

* -11-
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E 3E 2G a 2 G

at at

a2G

(since Gz  satisfies the wave equation UC - = AG
at 2

and the boundary conditions GZ(x,yt) 0, (x,y) e B) =

aG 2 aG 2
2 (-AGG) -2 1( z) + (-) I

UE ie

Similarly

aH 3 H aF 2 3F 2

from which it follows that

.(t) - 112ff {(C) 2 [(T a -A a-) + a.- Hz)] + C(EZ 2 + l (H•2 dxdy
R-F

I I finite states - a fact which will be very careful later.

It is necessary to modify this expression for general Ez, Hz. We begin with

Ezlx,y,t) = t)
aE

The only possible solutions of the wave equation (2.6) satisfying 0 and havingv 0h

this form are

E,( x,y,t) - eo + elt

where e0  and e, are constants. (Such solutions are consistent with a constant boundary

current J for which J. 3 0.) The corresponding Ex , M, Hz  are zero but

as 3H aH
Ce . ey xa - t ax ay

It is not possible to express this quantity in terms of Ez  itself or Hz . It is better

to leave it in the form C .t Solutions of Maxwell's equations with Ez  having this

az
form have energy expressible as a quadratic form in E and -.

-12-
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Next wt- corqider F H as 'Pecribed earlier. Such a Lrlutln cm- c, nsistent wit. a
Hr

%t-. <indary cu rrant for which JT 0, constant with respect to rime o,. t .c:-;!ibly varying

S%'

' 'ith (x,y) S S. We m-'Ay take Hx, T Ez  all zero. However,
-Y' z

C x =az Ca y axZ3. t ay' a 3x

so we may not assume that Ex and Ey are equal to zero. The energy associated with

s;olutions of this type is expressible in terms of

aH 2 aH2
. ."[/'"f f [ ( - ') - (a-- ]d~dy

R a

it integration with respect to t is permitted. In the sequel we wilt not explicitly

consider the timewise linear electric fields satisfying the above eauations.

We see then that a norm involving only Ez  and H and compatible with the energy

(2.3) may be expressed as

22 -1 _-1 2 ()2

ICE ,Hz)I =11f (Ue)2[( T-, -A-1t) + (at".- -a- +t) ( 2 1(z)
R

.. )2 + z,) + oM2 + 3M z) ]-xdy (2.17)

where p0,P 1 0,, are positive numbers. It will be seen that thks is a weaker norm than

the one associated with a pair of wave equations, viz.:

"'(E,Mz)' 2U If {,I[(--3E )2 (3- )2 ] + V + IVH7 2 1dxdy • (2.18)
R

3E 3H
We wi'l denote the Hilbert space of states E, H z Z lying in H I(R), H (P),

L2 (R), L2 (R), respectively, by H. This space will be very convenient for use in the

remainder of this paper. In some cases we will add boundary conditions to the

specif 4 cation of H, the space with norm I 1, without changing the symbol, to correspond

to an agreed specification of the states in H by similar boundary conditions.
%

-13-
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3. SOME CONTROL CONFIGURATIONS

We descfite here two possible r.!jlizattons of the co:Lrc. prob!enm which e, have posed

and indicate why we have chosen the mathematically more interesting (i.e., more difficult)

one to work with in this paper.
m I --

Let us assume that r a x (-ai) - B

s covered by one or more layers of conducting

bars, arranged in rows as shown in Figure 3.1.

Tn the case of a single layer of conducting - -- ,

baes shown in Figure 2(b), the bars are arranged r -

so that they make an angle 0, 0 < 1e < 2'

with the vector a (cf. Figure 1), while in

the double layer case (Figure 2(a)) they are Figure 2(a). Double Layer Control

arranged so that the bars in the second layer
, . I .-

make an angle 4P, 0 < 1ii < 2' I * 8, with '

the vector a. The current in any row of bars

parallel to the z-axis is independent of z;

i.e., constant for all bars in that row. As

we consider successively smaller bars we -.

obtain, as an idealization, the boundary

current vector

Figure 2(b). Single Layer Control

,(x,y,t) - J(x,y,t)(cos 00 f sin e8) (3.1)

in the single layer case, J(x,y,t) denoting the current strength with the sign determined

so that J positive yields a positive current component in the 0 direction. The

- corresponding formula in the double layer case is

J(x,y,t) J JI(x,y,t)(cos 60 + sin 8)

+ 24 + sin 4sc) . (3.2)

The current components are, in the single layer case

.J (x,y,t) = J(x,y,t)cos ,

j J (x,y,t) -J(x,y,t)sin 8
z

-_. -- 14-
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and3 in the double layer cas.e,

a3 (x y t)) co Cos ] f 1 (X.Y.t)

(3.3)
Jz(X,y,t) j in 0 sin 2(xy,t)

Tha determinant of the matrix in (3.3) is sin (' - 8) $ 0 if , * 9 in the ,ance

. ( 18I < ,0 < 14'1 < !. Thus in the double layer case J and J. are indp,-ndent

j and J2 are independent while in the single layer case J0 and J. are fixed

non-zero multiples of each other.

The double layer case is easily disposed of in the light of earlier work on boundary

control of the wave equation. Referring back to (2.10), (2.11) we now have, for

(x,y) e B = 3R, t e (0,-),

zat (x,y,t) = U (x,y,t) = cos 8 u1 (x,y,t) + cos 41 u2 (x,y,t)

- (X,y,t) -U (x,y,t) - -sin 8 u 1 (x,y,t) + cos * u2 (x,y,t)

a. 3Ju (x,y,t) = - (x,y't), u 2 (x,y,t) =  
- (x,y,t)

' .2°a

Since U and Uz  are independent if ul and u2  are, the control problem splits into

* ~.two uncoupled wave-equation problems, one for E. and one for Hz . These have been

. 5' discussed thoroughly in (21, [3!, (151, [16), [221, (23), [25] with affirmative

Scontrollability results for various control configurations and will not concern us further

here.

in the remainder of this paper we study the single layer case. If we let

u(x,y,t) =j- (X,y,t) (3.4'

we now have the wave equations (2.6), (2.7) for Ez, Hz and the boundary conditions

aH aa Z (x,y,t) Cos 8 jj (x,y,t) =a u(x,y,t) (3.5)

., -15-
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3V (xy,t) = -sin 0 T (x,y,t) 5 8 u(x,y,t) .(3.r)

The control problems for E, and Hz  are now coupled because the single control

function, U(x,y,t), appears in the boundary conditions for both Ez  and Hz; we have to

contol both systems simultaneously using the same control function.

If we rely on experience in a single space dimension, which has proved generally quite

helpful in the control theory of a single wave equation, we are led to believe that systems

like (2.6), (2.7), (3.5), (3.6) may, in fact, be controllable. Replacing u(x,y,t) by

u0 (t), u1 (t) and taking 0 4 x C 1, the one dimensional equations are, using variables

v, W,

2 232v 32v

2 0 (3.7)
3t

2  a
2

x

Lvv(Ot) = Qu0 (t), ! (1,t) = au 1(t) , (3.8)

2 2
a3w aw
at - -a=2 0 (3.9)

aw (0,t) -Ou 0 (t), ax (1,t) Ou (t) (3.10)

(w(note that - 1-- -oreponds to the exterior normal derivative at 01. Letting

axx

v =- (3.11)

3ww t (3.12)

we find that
2; 2;
. . . . 0 (3.13)
2 2

at ax
and

*2- 2-
0 . . . . 0 (3.14)

at2  ax

Differentiating (3.11) with respect to t and using (3.8) we have

-16-
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(0,t) =--- t) '3.1)

a (t) p 8x (0,t)

while differentiation of (3.12) along with (3.10) yields

(0t) Lx (0,t) = -Bu(t) , (3.17)

I2
""""a 2 w awaw (It) = w (lt) = 6ul(t) .3.18

atax1

Combining (3.13) with (3.14), (3.15), (3.16), (3.17), (3.18), we see that

* -w, v -- both satisfy the wa-e equation and

"""' 8(v + - )Ot ,a 0 w)~ (1,t)= 2_8 u'(1)% ax p p 1

.r.%

"3usth cnto prbl -fo 2 nd * -a

( + -2 w)(O't) -, 2 (By - w)(1,t) 0

N?('t 2, u0 (t),

Thus the control problems for By + - and -O- w are both of Neumann type and are
P P

uncouoled. Affirmative controllability results are then available from [20], (21], (24].

If we replace uO(t) (or u,(t) by 0 in the above, then B' - - w (or Sv _p
P p

*.%.; will become completely uncontrollable and our original system must therefore be

uncontrollable. This result at first seems to predict failure for the enterprize which we

now undertake for the two dimensional case.

-17-
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.t 'i'POX M'. TE BOUNDARY COTROLIABILITY

' ,.i Limple change of scale in thc t viriable, c,, d ronaini:,q cf the indepenzent

tri -ble,, we may ab- ime nat the system of intelest is

2 2 2
v v + 2v (4.1)t2 2 y2 '

at 2 ax 2 ay 2 t

2 2 (x,y) e Rw 2w + a2w
2w ' (4.2)

St
2  ax

2  ay 2

w-tsh bo..ndary conditions

_v (x,y,t) , au(x,y,t) (4.3)
*t

t ) fe H a
3w
3- (x,y,t) = au(x,y,t) (4.4)

We will not, in general, assume that u(x,y,t) can be selected at will for all values of

(x,y,t) shown. More on this later.

Because the system is time reversible, it is sufficient to analyze controllability in

terms of control from the zero initial state

v(x,y,O) = - y = 0 , 1 (4.5)

I (xy) e R
W(X,y,0) =L (X'y,0) 0 , (4.6)

fat

to a final state

av
V(x,y,T) v0 (x,y), - (x,y,T) v1 (x,y) (4.7)

(x,y) eR.

aw
w~x,y,T) W 0 (x'y), (x,y,T) w w(x'y) (4.8)

-1d-
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i . C: C C- W~T ~ , . -

We have noted in Section 2 that the I- finine tiates are d-: in Cn" I

* states. in the present context this means that e can work O:rh - -,- ltr:t c ,':e

"-" 3v aw
. states v, a, w, - with the inner product

,- -+- - + - + - -

lyt -t +~ t at + 5 ax T. T. T, a y Ty ay .
p.

a space which we will refer to as H. The norm is 3 I (cf. (2.18)) with 'a 1. As we

have indicated, this is a dense subspace of H, the Hilbert space obtained by use of the

norm | I (cf. (2.17)).

The final states (4.7), (4.8) are not quito arbitrary in H if the control u is

restricted so that its support ic contained in a proper relatively closed subset B1  B.

Since the condition

av
T- (x,y,t) a u(x.y,t), (x,y) e B

applies, we may as well adjoin the additional condition

v0 (x,y) = 0, (x,y) e B - B- B0 . (4.10)

The trace theorem U1I], [19]) assures us that this describes a closed subspace of H,

which we will call H . The only restriction on H is (4.10); v0  is permitted to have

arbitrary values in H
1
/2(BJ) and w0 , w, are unrestricted in H

1
(B), H

0
(R) - L

2
(R),

respectively.

Let U be a given space of admissible control functions, about which we will shortly

have more to say. For each control u e U we assume the existence of a unique solution

vu , wu  of (4.1)-(4.6) for t > 0, (x,y) e R. Very general sufficient conditions for this

to be the case are given in (19). We define the reachable set at time T, R(U,T), to be
av aw

U Ul
the set of all final states VuT(xy,T), (x'yT), wU~x,yT), i- tx,y,T) which may be

realized in this way. The set R(U,T) is a subspace of H if U is a linear space,

which we will assume, and our system is approximately controllable in time T if P(UT)

is dense in H1  (then R(U,T) is also dense in H because | | is a weaker norm

I I AnI H 1s dense in H). Evidently RUJ,T) is dense in H jus in ca;e, qvv,n dn

*~- 19-



arbitrary state (v0 1v 1 ,w01 w1 ) in HI,

3v 3W
((v"(x,y,T), Uq- (x,y,T), w (x,y,T), j- (xy,T)),(v0,v1 0 l)) 0

u e u} > = 0 . (4.11)

Let v(x,y,t), w(x,y,t) be the unique solution of (4.1), (4.2) satisfying the terminal

conditions at time T:

v(x,y,T) - v0 , t (x,y,T) V,, w(x,y,-) w0, (x,y,T) = w , (4.12)

and the homogeneous boundary conditions

2t (x,y,t) 0 , (4.13)

(x,y) e B, t ) 0

-w (x,y,t) = 0 (4.14)

Computing the quantity

3v 3wFUU(,~) t(,~) W u(X,y,t ) at (x,y.t])

( [ ,y,t), (x,y,t), (X,y,t), (X,y,t)))

using familiar duality theorems involving the Laplacian and integrating from 0 to T

(see (22], [23], [26] for details in the case of a single wave equation) we see that

( ( [( i (x,y,T),- (x,y,t) + u (x,y,t) )- (x,y,t)

u u dsdt . (4.15)+ f- (x,y,t) + (x,y,t) +y Cx,y,t)

Then using the boundary conditions (4.3), (4.4), (4.13), (4.14) we see that the above

-20-
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reduces to

ff ( (x,y,t)u(x,y,t)'dsdt (4.16)
0 13

If, as discussed abovu, we 5uppose rhat B has vh! iisjcint decomvorition

B = B0 - ,

w ith BI relatively open in B, and that u(x,y,t) 8 0, (x,y) e BC while on a, u is

unrestricted save for the specification of the admissible space (e.g., we might take

F. 2U = C(BI x [0,T)), U = L (D1 x [0,TI) , (4.17)

or any of many other possibilities), and if we suppose the first equation in (4.11) to

hold, we conclude that (4.16) vanishes for all u e U. We know from the trace theorem

(EI], [19]) that the partial derivatives

aT' , av t' V
restricted to B, all lie in H1/2 (B) for t e [0,T] and vary, with respect to the norm

in that space, continuously with respect to t, i.e. they lie in C(H1/2(B); [0,T]). We

suppose, as is the case for (4.17), e.g., that U includes a total subspace of the dual

space of C(H 1 2 (Bl)0,T]). Then the fact that (4.17) is zero for all u e U implies

3. a (x,y,t) + S L (x,y,t) 0, (x,y) e Bi, t e (0,T] (4.18)

We also have (cf. (4.13), (4.14))

a- (x,y,t) =  0, aw (x,y,t) -0, (x,y) e BI, t e 0,T) (4.19)
at 3

The boundary values of V and Z are therefore overspecified on B, X (0,T]. The procf

of approximate controllability, where it can be carried through, depends upon being able tc

use this overspecification to show that

v(x,y,t) E 0, w(x,y,t) E 0, (x,y) e R, t e [0,T]

and therefore to conclude that the implication (4.11) is indeed valid so that R(U,T) is

dense in H1  and hence in H. We carry this argument out for the case in which R is a

rectangle and B1 is one of its sides in Section 5.

% -21-
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Following the develbpment in [6], it may be seen that our system is exactly

ccrtrollabis in H1 , us ng the control space U L ! f0,Tf ,gust in case

Ia a 2 0,.1'w I (4.20)
3 atL 2(B1x[0,T]) 01iH

for some K > 0. In general this is a very difficult result to obtain but we are able to

obtain exact controllab.lity, by other means, for the case where R is a disc in R

and B, = B is its boundary, a circle. This result is developed in Section 6 where it

will be seen that it is heavily dependent on certain properties of the Bessel functions.

-22-
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4I

5. THE CASER A RECTANGLE, B= ONE SIDE.

The work here can be carried out for a cectanqlc with arbitrary dic nsions, but ali

essential ideas are contained in the notationally simpler case

R {(x,y)10 4 x 4 w, 0 4 y < w)

to which attention is restricted henceforth. We will assume that B, the portion of the

boundary on which control is exercised, is one side of R, without loss of generality it

is the set

B, = {(Wy)I0 < y 4 w) . (5.1)

We consider thn v, w satisfying (4.1), (4.2) in R X (0,T) for some T > 0, and also

satisfying boundary conditions

S(x,y,t) = 0, 3 (x,y,t) 0 0, (x,y) e B aR, t e (0,T] , (5.2)

v 3;
a (r,y,t) + Tt (z,y,t)

3V

3al (w,y,t) + Bw (w,y,t) 0, 0 y 4 w, t e [0,T] (5.3)

We may assume without loss of generality, since the wave equation is time reversible

with either Dirichlet or Neumann boundary conditions, that V and w are extended to

satisfy (4.1), (4.2) on - < t < - and that the boundary conditions (5.2) hold for

(x,y) e B, t e (-w,). we may not assume that the boundary condition (5.3) is applicable

beyond [0,T], however, if controls are restricted to have support in B, x (0,T]. Let

6 > 0 and let s(t) be an arbitrary function in C"(-,-) with support in (6,6).

Define

v(x,y,t) f s(t - T)v(x,y,)dT , (5.4)

w(x,y,t) = f s(t - T)w(x,y,11dr . (5.5)

Then v, w are solutions of the wave equations (4.1), (4.2) satisfying boundary conditions

-23-
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at (x,y,t) , , (x,Y) e B = aR, 5.6

while

av aw
1 s (v y't) + S t (W,y,t) 0, 0 - y 4 W, t e (5, T - 6'. (5.7)

Moreover, it can be shown that v, w are of class C for (x,y) e R, - ( t < . f we

can show v - 0, w - 0 for any such choice of s, then v 0, w 0.

Let us define, for (x,y) e R, - < t < -,

av aw

-(X,y,t) = a - (x,y,t) + L (X,y,t) (5.8)

From (5.7) we have

.(w,y,t) - 0, 0 4 y ', t e L5, T - d1 • (5.9)

Since a and B are constants we have

2 2 2
2 -2+2 (x,y) e R, < t < (5.10)t2  x2  y2'

at ax ay

Let us note that, since v satisfies the wave equation in R U B,

t2
r3 2 aw 2

a a V.- (x,y,t) 32 (xwyt)
+ _i (x,Y,t)l + B i-- (x,y,t) .(.1

ax ay

Setting x = w in (5.11) and differentiating the identities in (5.6) with Kespect to t,

we see that the left hand side vanishes. Then, comparing (5.11) with (5.8)

(',y,t) -u) av (y), 0 y 4 W, 4 t 4 . - S (5.12)ax y2''
ay

the last identity being valid as a consequence of the first condition in (5.6).

The two conditions, (5.8) and (5.12), satisfied by * at the boundary x ir enable

us to use Holmgren's uniqueness theorem (see [5] or [131, e.g.) in much the same way as it

-24-
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-iii used in the proof of the approximate controllability of the wave equation in [223, 23:

to see that if

T > 2 + 26 (5.131

then * must be independent of t for 1 + 3 4 t C T -T - 6, i.e.

.(x,y,t) = (x,y), (x,y) e R, 1 + 5 C t C T - 1 - 6. (5.14)

Because v and w satisfy the wave equation in R with the homogeneous boundary

zonditions (5.6), and are of class C in R U B, we have C - convergent expansions

- k kj - kjtvx,y,t) =v 0 (x,y) + (vje + v )sin kx sinjy (5.15)
k=1 j=1 j

- iWkt -iWejt
,(x,y,t) = w0 + k (wje + ;ke kj )cos kx cos jy (5.16)

k=1 j=1

where

Wkj /k 2 + j2 (5.17)akj

v 0(x,y) is a C function in R U B such that (cf. (4.10))

00 v0 (x,y) = 0, (x~y) 8 a - {(z,y)I0 C y C v} (5.18)

and - 0  in a constant. Then, from (5.8),

Vo (x,Y)
*(c,y,t) - 0l =

CAx

S iWc t
S cos kx[ (akv sin jy + ieekk.cos jy)e 'kj
k-1 j=1

-- i tkj

+2. (akvksin jy- iBewj coS je j , (5.19
jal k kjwkjco

still C - convergent for (x,y) e R U B, < t < Noting (5.14), we see that the

left hand side takes the form

3 vo(X,y) 3v ( x,y)
*(x,y,t) - a ax z *(X,y) ax # Xy)i+ 6 • t T- 1- . (5.20)

-25-
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* . We P-j strengten (5.13) to

T > 4 * 26 (5.21)

and we see that the time interval in (5.14), (5.20) has length > 2, i.e.

' - 1 - 6 -(1 + 6) - T - (2 + 26) ) 2 . (5.17)

Since the functions scos kx are orthonormal on 0 4 x < w, we coinclude from (5.19),

(5.20) that for k - 1,2,3,...

r (akv sin jy + iSwk Wkcos jy)e k]

i Wjj
--- i, 3 t

+ (akvk.sin JY - i'kjWkjCOs jy)e
i-i j

- f *(x,y)cos kx dx E k (y), 1 + 6 4 t 4 T - ( - 6 . (5.22)

0k

Classical results of Levinson and Schwartz (C171, (271), which have frequently been

used in control studies of this type (see, e.g., [121, [211), can now be used to show that

for each fixed k, the exponential functions

e+iw k jt . i/ k 2+j 2 t j
e e , j =1,2,3,.,

together with the constant function I are strongly independent in L2 (1) for any

t-interval I of length > 2. This clearly contradicts (5.22) unless we have

k(y) E 0, 0 < y < w (5.23)

and

akvkjsin jy + iowkjwkjcos jy = 0, 0 4 y 4 w, J = 1,2,3.

But then, since for each j sin jy and cos jy are independent on 0 4 y 4 x and since

none of a, k, B, are zero, we conclude that

Vk, = 0, w k = 0, k = 1,2,3.......j 1,2,3,(5.24)

Since (5.22), (5.23) show that

*(x,y) = *,(y)cos kx 0
k=1

% 2! -



(5.19) gives
v (X, Y2)

-(x,vt) O*(×,y) a - (x,y) e R (5.25)

"" I + t T - I - .

Notina (5.15) and (5.16) and the fact that v(O,y,t) E 0, we conclude from (5.23) that

v(xy,t) - v0 (x,y)

,"-" I 6 .t 4 T ( 5.2E)

1/.0% - w(x,y,t) - w0 ,

Since v(x,y,t) E v0 (xy) is a solution of the wave equation with (cf. (5.18))

v0 (x,y) = 0, (x,y) e B - {(W,y),,n < y 4 i

it rust in fact be a solution of Laplace's equation there. Then we compute

2-2

f vo 2 av 2 a v
[(- 2,Y + (-q (XY)) + V (x,y) + - (x,y))]dxdy

R " 3 y

. I div(v0 (x,y)grad v0 (x,y))dxdy
R

- . av 0 %yd
= f v0 (xy)grad v0 (x,y)-V(x,y)d =f v0 (Wy) a x,yldy . (5.27)

B 0

Combining (5.9) and (5.25) with the fact that V0  satisfies Laplace's equation we conclude

from(5.27) that

f[v 2 av 2

f[T (X.Y)) + (- 2 (x,y)) ]dxdy =0

'..: and this, together with (5.18), implies

V 0 (x,y) E 0 . (5.28)
a.0

Combining (5.26) and (5.28) we conclude that

v(x,y,t) 0

". (x,y) e R, - - < t < (5.29)

w(x,y,t) w

the result for -< t < being an immediate consequence of the result for

w4x t - w 0  -27-
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0.T).ktOW 4' .

1+ 5(t 4 T -6 Since this is true for every 6 > 0 and every s(t) ij! (5.4),

(5.5), we conclude that a comparable result obtains for 11, w in (4.11), (5.2), (5.3). i

follows (since w -constant is a zero state in Hand in H) that (cf. (4.9) ff.)

I(V0 ,V 1 w0,w1 )I = I~v' 0 IVW0 ,w 1~% =

and, from the discussion in Section 4, the approximate controllability result follows.
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6. SOME EXACT CONTROLLAB3t.ITY RESULrS tN THE CASE OF A CIRCULAR CYLINDER

We consider now the ca3e il R x (-,) with

R =((x,y)Ix 2 
* y 1}

B DR = {(xy)Ix
2 + y = I

with introduction of the usual polar coordinates r,@, the equations (4.1), (4.2) now

become

2 2 2
v a v 1 _v 1 v
2 32 r3r 2 2 (6.1)3t
2  3r2  rr r 382

2 2 232 w I w 1 32w- -+ + 26.2
at

2  ar
2  r r r2 D (6.2)

and the boundary conditions (4.3), (4.4) are transformed to

at (1,8,t) Q
M u(Ot) (6.3)

3wr(1,,t) = 0u(8,t) . (6.4)

Writing

ikO-

v(r,O,t) -  v(r,tlei, V-k vk  (6.5)

-. k=-

w(r,O,t) = w (r,t)e , w w ,
k.- -k wk *(6.6)

u(Ot) = k uk(tIc ekO (6.7)

we arrive at an infinite collection of control problems in the single space dimension, r:

2 2
3v v v 2

k 2k I aVk k
2 2 + r0, - < k < , (6.8)L" 2 r2 r r 2r I

at ar r

a 2w 3 2w 3w 2
4 2k 2k 1 IWk I

2

2 r r 2 Ic =0, -< k , (6.9)
at 2 3r 2 r r2w
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4" -

bV

k
Ir t t) 1k < k < o (6.11)

We will first treat the equation (4.1) with the boundary condition (4.3) which, as we

have seen, reduces to the set of problems (6.8), (6.10), - < k < -. With

z(rB,t) = (r,t)eik8 3v k (r ' t) ike  -v
,t k~k---t e =t (r,e,t)

k-- k=-

we have the equivalent first order systems

k (v. rrt)) (0 ) (vk.t)) L LI (kr,t (6.12)
tk k z1 ( t k (r

"4

where L kI is the differential operator on the right hand side of (6.8). The boundary

conditions (6.10) become

k(1,t) au (t) ,  - < k < (6.13)

The eigenvalues of the operator L1 k with the corresponding homogeneous boundary

condition

zk(1,t) = 0 (6.14)

are

0, il 1 1,2,3,...

where W is the £-th positive zero of the Bessel function J;kl(r) of order IkI.

The corresponding vector eigenfunctions are

where

Ikl
*IkIO Cr) A or -(k -(6.15)
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(W < k <

€1k1L = l( IkI IkI,Z I 1,2,3,...

The normalization coefficients AjkI'O, Alki, are chosen so that
I 1 I

2 1
rt1 )l,0 (r) dr 

= -, f r¢Ik, (r) 2dr = .- ;, L = 1,2,3 ..... (6.16)
1 0 

Thus

A = -Iki
-  

- < k <
IkI,0 'w (6.17)

while, as may be seen from (5], e.g.

A kIl kl,1 (6.18)

l l JjklI(OlklZ )

The state space in which we wish to work, for the present at least, is (cf. (2.18))

H- [()Iv e H(R), z e L2(R)I

with the inner product

((vl), (v 2 )) =f (Vv1.Vv~ + Zz z)dxdy
1 2 R

and associated norm. Since the # Iki, satisfy the homogeneous boundary condition (6.14)

one easily sees that

ik_

(k 
O  = e IkiOe A(4Ik ikO )dxdy

H R

_e ___l,_ e-ikd d6+k + 1+ €lk,O e  fr+ Iklde
0

=21kI(IkI + 1), -< k < , (6.19)

while
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+ f V*IkIVOII dxdy -2X~k 2 ~ *~ dxdy. 2X11 (6.20)
RR

where

I kIl j WIk!.£J ) ( k < -, X ,23

The state 00") has zero norm in H. Nevertheless we will not neglect this component.

If v, both satisfy the wave equation and (6.3), (4.13) on 8R with initial state

(4.5) for v we have (cf. (4.16))

(((::T) (;:,:, a fT f u~~~) -(x,y,t) dsdt . (6.21)
Z( T) T) H 0 JBER T

It may be shown that this result is valid for all u for which the solution (in the

generalized sense) v lies in H and varies continuously with respect to t. This class

of controls u is discussed in (19] and is known to include, e.g., u e c((o,ThH 1/2(BW).

If we assume ()given by the H- convergent series

V( v (t(0)O ikO
" ,t) kO ( k

ikk [ ik

+ k, VIlt x=2IkI  i ~k t2 k , 6.

;(., [-£t) {O }u (tT),

-

1, kl) - < k < ,

~ike , ik O L I, 2 ,3.... (6.22)
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for T > 0 we arrive at the equations

T 2z:k' k21 k 2I(Ik I + 1)v k 0 (T) f f U(O,t) 3rI, ( 1 kGdd

0 0

3 O(k,0 T
27a - (1) f *td (6.23)

3r 0

+T 27r i"IkjLI(T-t) 80 kilt -ike
2x k 2 I Y', (T) af f M(G,t)e ar (1) e d~dt

' Jjj T 4'Ikj (T-t)
2 . wa (1) f e u.k(t)dt ,(6.24)

2)A (T) f Tf 2xu(O,t)e ar'j'LTt 'jj (1) e- k d~dt
IkIL kL 0 0 3

27ra f T e-'kITt ukt)dt .(6.25)
arK

Thus the Dirichiet boundary control problem for (6.8), (6.10) is reduced to a moment

problem (6.23), (6.24), (6.25) for which uk(t) must be a solution. We proceed in much

the same way with the Neumann boundary control problem for (6.9), (6.11). We let

ikO aw k(r,t) iO 3

(r,B,t) = k Ck (rtat e t -(r,B,t)

and obtain, in place of (6.12),

w rt 0 I)(wk (r t) (vk (r :t))) (6.26)
I-Ck (t) MIkI C k (rt) M k zk(t

The boundary conditions are now

aw k

ar (1,t) Suk(t),

The eiqenvalues of MjkI with the corresponding homogeneous boundary condition

4. -33-
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awk
".'.. -- (1.t) = 0

" are, for k - 0,

0, iVe £ 1,2,3,...

where Y is the L-th zero of the differentiated Bessel function, j;(r), of order

0, and, for k * 0,

.i 'k, ,. 
= 

1, ,3.. .

where v k, is the 1-th zero of JI(r). In the case k = 0 the eigenvalue 0 has double

. i multiplicity. The special solutions taking the place of (6.22) in this case are

'.,*t" J= , 1 6.27)

where *00 is such that (cf. (6.16))

f r*2crie0 0 d 00"' J'r~o .- ,i.e. -0
0 /

ft..

In all of the other cases the vector eigenfunctions take the form

|2-'.' " IckL (r)
.(±ikt ,t"iklL(r) - < k < , . = 1,2,3....

where

-< k <
4lkl,(r) = kJlk (Vlkltr)

"  
1 1,2,3,...

the normalization coefficients

"Ikl, t  
(6.28)

jlkl ,f q lkIL , k2 ) 1/2J1I (Vl ,v )

selected so that

R 2" I- rl1 1kltf(r)l
2dr

The corresponding special solutions of the homogeneous equation are

-34-
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* . -k

IV (t-T) ,e Ike

iV lt ik
iike

i (t-T) ikO6.29)

*AS in (6.20) it may be seen that

I"tivukl,1luit = h l lIkIL lklk "

Let w satisfy the wave equation and (6.4) with w(x,y,O) 0 0, C(x,y,O) =

(xY,0) 50in R. We expand () in the form

0w(.t)= Wo(t) (00) + r"C"(,:. t)) 0 000( )0

t. k=~- k= IVt Jk eik8 I -iv 'k8e ike
%[- k - L= I lk ,t e -i w Ct)kl,Le

If w satisfies the wave equation and the homogeneous boundary condition (cf. (4.14))

iv (x,y,t) = 0, (X,y) e B, t ) 0 ,

we find (cf. (4.16), (6.21)) that

" • T

j((( ., *. B f u(x.y,t) 2: (x,y,t) dsdt (6.30)

% T) H 0 R

Employing (6.29), (6.3) successively for ( ) we arrive at the equations, for
U:.

< k <, L=1,2,3.....

.f* '- 35-
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+ T 2w ik1 (T-t)
2 (T) 8 J f U(Ot)iv ,e It Ie- ik dedt

T IV v (T-t)
'Ii kI k,(I) f e IkIt u(t)dt (6.31)

0

T T 2 -iv Ik (T-t) -ik
2vs ki,£wkLI(T) = -0 f f u(e,t)iv l' e IkkJ(Me- dedt

0 0 k

_ T -iv (T-t)I = 2w~ivlktL uIkIL(1) f e Uk(t)dt . (6.32)

0

We find also, taking ( ) in the second form given in (6.27), that

T 2_ T
co0 0 (T) f f u(e,t)00 dedt = 2wO$OO f u0 (t)dt • (6.33)

00 0

Since this must be true for all T and ! w00 (t) - C0 0 (t), we have also

_ T
w00 (T) - 2wo -- f (T - t)Uo(t)dt (6.34)

0

Since U .- (% 1kIJ (6.31), (6.32) become

T iVIkIL (T-t)

1i w k,L (T )  IkI O uk(t)dt
0

T iv k,(T-t)

lklIl'kl (V IkIX0 . uk(t)dt (6.35)

Vlkl,t . T -iV (T-t)
".0i- wk. (T 8jjek ("jjt f e kI u k.(t)dt . (6.36

Taking account of the fact that

IkI A khL
... IkIL IkI,X 3r IkIL

(6.24) and (6.25) yield

-36-
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ET i k ,I (T-t)
vIkIL _J_ _, ((T ) e u (t)dt (6.37)- v ,(T) =Ak, r k')0

itC IkI 3 r 1)1 a

T -iw (T-t)
wIkI, j (JIkl j (W I e k U (t)dt . (6.38)Wa v;,(T - Ak),X 3r jkj,L 0k

On the other hand

JIkI,0 1=A IkI
3r IkI,0

so (6.23) gives

Sk + I Vk, (T)= Ak T, uk(t)dt 6.39)

P Using the formula (6.18) and (6.28) for A and B we have
IkIl J IkIJf

"-"__,+Ak,9. Bl,T

SjkI, W+ .(T) 2 1/2; e v kI(Tt)uk(t)dt (6.40)..i.k, ( l - k2) 1  0

V _-kI,L T -iVlkI (T-t)
w"" ( = e''j u (t)dt (6.41)

Wei k,( / (ik - k2 )1/2 k

" ' ' IklZ + 1T ei,.ik (tT-t)
Vk, (T) f ki uk(t)dt (6.42)

Wa I, I ~ kc

!!k v (T ) f T u (t)dt
-- 0T  Ukll (6.43)

The equations (6.39) become, in view of (6.17),

/2 P + VO (T) 'r'k f UkC t)dt • (6.44)

This is valid, but meaningless, for k 0. It is easy to see that in the case k = 0 we
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should use

- V (T) f uk(t)dt (6.45)
00

The equations (6.33) and (6.34) are left as they appear. We note that all of the

coefficients
"IkIJ 1 l 2k

2 (-/2 . k 0, 2w8 (6.45)

Ar

are bounded away from zero, uniformly with respect to k.

It is also possible to show, using the work (101, 1111 of K. 0. Graham, that the

numbers

e,.

are separated by a gap at least equal to w/2 again uniformly with respect to k.

Applying the result [14) of A. E. Ingham along with the work -f Duff in and Schaeffer (7],

much as in (121, [21, [31, we conclude the existence of functions uk(t) in L2 (0,T), for

a ny fixed T > 4, solving the above moment problems,. - < k < - Moreover, the result of

. , -°o

Ingham implies as explained in [12], [261, that for each k

T

c2 N 2 f u k(t)I dt C 26.C 2

a

where2 21(II+ )v

N )k1/2 +-' kk (T)26

+Ik 2,2
-+." I (k l + X IV (T)

*kI kIkI,L k,L

1 2" 2
* ~ k k "kL)I , t I w ,(T)l

k !1,2... . or k 0 we must add i , (T) 12 + 1w00 (T)l 2. Since

f f I u(e,t)I 
2,ddt T

f I k (t)I dt (6.46)
o 0 k-- 0
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F.4

we see that the above moment problems, equivalent to the control problem, can be solved

I. with (6.46) finite, provided that

I?.N k < ,qk=_ N2 '.

k-

. which is the same as saying that the norm of the final state in H should be finite. We

."have, then, the exact controllability result that any H state may be controlled to any

other H state during a time interval of length T > 4 with the control configuration we

have described here. As discussed in connection with the wave equation in (FF], [GG], one

cannot be sure that the state of the system remains in H for all t e [0,T]. However, in

the present case of the Maxwell equations one can show that these states do lie in

H ,d (R).

JJ
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7. CONCLUDING REMARKS

The approximate controllability results of Section 5 would appear to be extendable to

domains other than rectangular ones but the precise method of extension remains to be

worked out. We will indicate some aspects of this problem which are clear from our current

. work.

" First of all, the result of Section 5 is almost trivially extended to the case where

control is exercised only on a subset {(w,y)}0 4 a < y 4 b < wj, b > a, of

{(wy)10 4 y 4 ii. The only change is that the interval 1 + 6 4 t < T - 1 - 6 appearing

in (5.14) and subsequently must be modified to d + 6 4 t 4 T - d - 6 where

d inf I sup [(,- E)2 + (n- y)11/2)1

a-Cyb 0(F&(w
0(11(1

If #(1,y,t) - (w,y,t) B 0 for 6 < t 1 T - 6, a • y < b, the Holmgren theorem will

still apply to show that *(x,y,t) E 0, (x,y) e R, d + 5 ( t 4 T - d - 5. After that the

remainder of the proof is the same: the same eigenfunctions and frequencies must be dealt

with, the functions sin jy, cos jy are still independent on a 4 y 4 b if b > a and

the conditions

v (x,y) - 0, (x,y) e B - {(,y)la 4 y • b)0
-- 3v0

3x (w,y) - 0, a 4 y < b

still show v 0(x,y) - 0 in R.

The first limitation of the method which we have used in Section 5 lies in its

dependence on the construction of *(x,y,t) as a linear combination of partial derivatives

of v and w. It is necessary to have a solution of the wave equation to which Holmqren's

theorem may be applied. This part of the proof can still be used for non-rectangular

domains as long as a portion of the boundary on whicN control is applied is a straight line

segment. Assuming the segment parallel to the y-axis, one can construct * by the formula

(5.8) again and show that # and i both vanish on the straight line segment in
ax

question, allowing subsequent application of the Holmgren theorem to show f(x,y,t) S 0

-40-
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for (x,y) e R and t in some interval d + 6 ( t ( T - d - 5, with d depending on the

geometry of R. But then we are faced with a second limitation.

The second limitation of the method which we have used lies in its reliance on the

specific form of the eigenfunctions and frequencies to pass from *(x,y,t) E 0 to the

conclusion that both v(xy,t) and w(x,y,t) are likewise identically zero. It needs to

be emphasized that no local analysis will suffice here. In the one dimensional case (see

our remarks at the end of Section 3) if the control problem is stated for boundary

conditions

v(0,t) -0, L (1,t) - Qu(t) (7.1)

3w aw
ax (O,t) 0 , -. (1,t) Bu(t) (7.2)

the v, w constructed as in Section 4 will satisfy the wave equation and

v(O,t) 0, - (1,t) - (7.3)

3w.3

- (o,t) = 0, - (1,t) - o , (7.4)
ax ax

(1,t) + B - (1,t) *(1,t) = 0 (7.5)
ax a

Here if we take w to be a non-zero solution of the wave equation satisfying (7.4) and

take

v(xt) = - 3;; (e,t)d

we clearly have V(O,t) O 0,

t (1,t) - -] - t d

~!cb!0 at2

1 -- 1.a

0 ac2  a
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(xt) Bf •,t)d
at2  0 3t3

fx - w2w 2 x,t) (2 t
G tt2 a at3x ax )"- o 3t31[ 3x2

* so that V satisfies the wave equation and, clearly, (7.5) is also satisfied. Thus the

-° wave equation with (7.1), (7.2) is not approximately controllable; *(x,t) -
3v 3; ~
av (x,t) + B L (x,t) B 0 but this does not imply that v or w are identically equal

to zero. The additional condition which makes this work in (3.7) ft. is the fact that one

can show there that

-a -. (Ot) + B a (Ot) - 0

It seems likely that the question of whether or not * - 0 implies that both v and w,

equivalently ; and w, are both zero must eventually reduce to a boundary value problem

of an as yet unidentified type.

At the present writing there is only one, rather curious, result which we can offer

which yields approximate controllability for a domain R of rather general shape. We

suppose that the "control boundary" 9, B - 3R includes two nonparallel line segments,

1 and 121 with unit exterior normals v, and v2 . Proceeding as before we can show,

applying the Holmgren theorem together with

3v 0 on £1, £2

- 0, i - 1,2 on £V 2 respectively,

av + B w i 1,2 on I" £2 respectively,

that both

3V 3W (7.6)
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must vanish identically in R for d + 6 4 t 4 T - d - 6, 6 > 0 arbitrary, d > 0

depending on the geometry of R and 9, the location of 1 an 2 within , etc.

But then both and *2 must vanish on I (say) for these values of t. Subtracting

(7.6) from (7.7) we see that

a(- -- ) 0 on 9. x [d + 6, T - d -6]3V au
1 2

This shows, since Z and I are not parallel, that a nontangential derivative of V

3v
vanishes on 1, x [d + 6, T - d - 6]. Combining this with T - 0 on LI and applying

the Holmgren theorem to v alone, much as in (5), (13], we are able to conclude v 0,

provided T is appropriately large. Then one easily has the same result for w and

approximate controllability follows.

This result gives approximate controllability for R equal to the interior of any

closed polyhedron in R2 with control on at least two sides.

Further inspection of this argument shows that only I9 needs to be assumed to be a

line segment. That is needed in order to identify *2 as a solution of the wave

equation. We may then take XI to be any smooth portion of B, which is never parallel

to I and achieve the same result.

Finally, let us indicate that we are very much aware of the limitations, from the

point of view of actual implementation, of the control configuration discussed in this

paper. In principle, at least, the boundary conditions (1.7), (1.8), along with the

* .further "single layer" condition discussed in connection with Figure 3.1, could be achieved

with conducting bars attached to terminals as shown in Figure 3.

~-43-
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Figure 3. Conducting Bar arnd Busses

The perfectly conducting busses perpendicular to the boundary of 17 ensure that the normal

component of 1,E v is zero just outside 0, provided that no net change is allowed to

accumulate at the boundary of A, i.e., in the conducting bar. Thus the potentials at

C and D must be regulated so that the potential difference C - D ensures the correct

controlling current through the surface bar 8 while C + D is set so that there is no

accumulation of charge at the bounding surface.

We have not considered any effects of propagation delays in the controlling circuits-

i.e., we have not assumed that these are distributed parameter systems. This assumption,

and evident limitations on the speed with which prescribed currents can be computed and

established in the controlling circuits together with sensing limitations, place admittedly

% severe limitations on what can be done *open loop". It is likely that the eventual

significance of our results will be most evident in connection with closed loop behavior

wherein time varying magnetic fields A near the boundary of n induce currents in the

bars 8 which, being resistive, will then act as energy dissipators. We hope to discuss

this topic in later work.
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Another control configuration may be obtained by supposing the boundary of fl to be a

perfectly conducting sheet of material to which electromagnets are attached in a dense

array as shown in Figure 4.

Figure 4. Electromagnet Array

If J denotes the current through the windings of the electromagnets, then we shall have

E=C 0

and

H -

where a is dependent on the electromagnet's configuration. The theory in this case will

take much the same form as the one discussed in this paper.

Ox
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Abstract

We present here a class of realizations {Yp} of the dual space 0' for

the Paley-Wiener (Hilbert) space 6 of entire functions. The elements of each

space Tp are meromorphic functions with poles at the zeros, zk, k e K, of

a certain "cardinal function" p. The relationships between 0 and Tp are

explored and applications are made to the study of nonharmonic Fourier series

whose terms are complex exponentials ezkt.
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1. Introduction and Statement of Principal Results.

It is well known that certain families of entire functions may be given a

Hilbert space structure. (See, in particular, the extensive work [A] of

de Branges in this connection.) The most familiar of these spaces is the

so-called "Paley-Wiener space", which we here designate as 0. It consists of

entize functions o(z) = o( +in) with the following properties: For each
%'%

>7"i(i) there exists a positive number, Mo, such that
o.' 

o

() there exists a positive number, No, such that for every real

v%(+in) I 2 d n 4 Noe 2 'K (1.2)

An inner product and norm for this space are described in [A] and that norm is

- equivalent to the norms which we will introduce at the beginning of Section 2.

One of the purposes of this article is to introduce a space (actually, a

class of spaces), Y, of analytic functions * - *(z) having singularities

* confined to a vertical strip in the complex plane C , and serving as a

natural representation of 0', the dual space to 0. The main interest centers

on T £ Y which are meromorphic with poles confined to such a strip. The rela-

tionship between 4 and T is somewhat similar to the duality relationship

between paired H2  spaces. If we define the left and right Hardy spaces Ga

and R. to consist of functions g(z), h(z), analytic in Re(z) < a,

Re(z) > a, respectively, bounded in sets Re(z) < a-c, Re(z) ) a-C, respec-

tively, and satisfying uniform L2 bounds

V.
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J' g( +in) 2 d Bg, < a,

2'- h( E+i 1) dn < Ch, > a,

then (see, e.g., [B]) g and h have L2  traces on the line Re(z) a a

and the duality relationship
-.

* <g,h> Jg(at+iri)h(ci+in)dn
2 2

may be used to define all linear functionals on Ga or Ea, each of these

spaces being a natural representation of the dual space of the other. We will

have more to say about this in Section 3.

Just as in the case of the Paley-Wiener space and the other, related, spa-

ces described by de Branges, the spaces T which we introduce as dual spaces to

0 are intimately connected with certain entire functions p(z) which "Just

fail" to lie in 0; p does not belong to 4 but if i is one of the zeros of

p, p(z)/(z-z) does belong to 0. We call such a function a cardinal function.

The precise definition of a cardinal function operative in this paper is the

following: an entire function of order I and type z, p(z), is a (regular)

'.F cardinal function if there exist Ml+, H-, a, all positive, such that, for all

z

p(&+i,,) M M e " ! (1.3)
and

Ip(&+in) M-e  I ' > a. (1.4)
If p is a cardinal function, the space of meromorphic functions

1- ( (z) - *(z)/p(z), * C 4)
p

is shown to be a natural representation of the dual space '. With Zp being

the set of zeros of p, one sees that the meromorphic functions * £ Tp have

partial fraction decompositions analogous to



4

-.-

(with suitable modifications in the case of multiple zeros) which are telated,

in much the same manner as described by Schwartz in [C], to exponential bases

z t
~kt

E = {e Ikz eZ }
p k p

for the space L2 -w,w]. We are able in this way, to describe certain Riesz

bases and "uniform decompositions" of L2 [-w,w], using properties of p

somewhat different from the assumptions on the growth and spacing of its zeros

appearing in the classical work of Paley and Wiener [D], Levinson [E] and

Schwartz [C], or in more recent treatments, such as Duffin and Schaeffer [F]

and Young [G].

.P

..- :|%-.

.p. .'j

5,* 5 I
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2. * and T as Spaces of Fourier and Laplace Transforms.

S°. ."The linear vector space, 0, of entire functions satisfying (1.1) and

(1.2) coincides, as is well known, with the set of Fourier transforms

T

O(z) = J eZtf(t)dt E (Ff)(z) (2.1)

corresponding to functions f c L2 [-r,w]. The inverse relationship is

f-")-. E+iA -zt
f(t) .i.m. e *(z)dz S (F )(t), (2.2)

.A+. 2i C-iA
the integration taking place over the straight line segment joining the two

integration limits. The Plancherel formula

2 1 2
If 2 [ w = - ) 2(- , )

shows that (2.1) and (2.2) are each positive scalar multiples of an isometry on

L2 (_o,co), the notation 0(i-) indicating the restriction of * to the imagi-

nary axis. From

'.' W (E+in)t

(+in) e e f(t)dt

it is easy to see that for each real E
e -2v ] I(i.)I L 2 (-%) :(E+i) (2.3)

from which it follows that each of the norms I I defined by

2 = 1(p+i) 2 + I )d

P -- Jrf *(z-) I21 d= I = i*i 2()

r being the contour consisting of Re z = p, oriented upwards, and

Re z - -p, oriented downwards, is equivalent to 10(i.)E L2(-_,). Much of our

% .
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work depends upon being able to vary at will the particular value of p being

using for I Ip, secure in the knowledge that the resultant topology remains

" invariant.

. :Let T denote a certain family of functions *(z) analytic in i Re(z) > a

*i. for some a > 0 which may depend on 4. With rp as already defined, p > a,

we specify T precisely as consisting of such functions 4 for which the iden-

tity

4i(z) = - j d, Re(z) > p, (2.4)

is satisfied, and, also for every p > A > a

Jr I 4(z) I 2 dz N 2.5)

P

where NO is a positive number depending on . It is quite straightforward to

see that a sufficient condition for a function 4, satisfying the second con-

dition, (2.5), to also satisfy the first condition, (2.4), is that *(z)

should be bounded in IRe(z)l ' p for every p > a and, again for every

4 p>a,

"(z)dz
=ile 09

r +m r,p P-Z r + = Cr -p, -z Z

where r,P, C 1r,-p are, respectively, the right anid left hand semicircles of

radius r centered at the points z = p, z - -p, respectively.

Proposition 1.1. Corresponding to each 4 (and associated a) in Y there is

a unique function g F L'- (-i,), p > a, where

23  2 -b {2p I t g(t) 2 1 26
, . oc(g--) I" e I I< 2d - (2.6)

and 4 - g, the "two-sided " Laplace transform of g, in the sense that

S #. .... .-..-................
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4(z) (.g)(z) = e g(t)dt, Re(z) > a, (2.7)

0 -zt
= -J e g(t)dt, Re(z) < -a. (2.8)

Moreover, for each g e L2 p (_, ,(z) = (.9g)(z) C I.

Proof. This is quite standard, so we will be brief. Symmetry allows us to

-.. consider only the t > 0 part of (2.6) and the first identity (2.7). Given

. Y, we define g e L2[0,) by use of the Laplace inversion formula on the

P

line Re(z) = P, p > a, and application of the Plancherel Theorem. On the

other hand, if g c L2 [O, - ) and we define *(z) = (Zg)(z) by (2.7) for
-- p

Re(z) > a, application of the Plancherel Theorem again establishes (2.5), inso-

. far as the portion r+ = (z Re(z) = P} is concerned, for p > a. For

p > A > a, application of (2.7) readily shows that

' *(z) I ' 1 -0 le- Ag(t) 2 , Re(z) ) p. (2.9)

.. Re(z)L 2

Let rr,p denote the positively oriented D-shaped contour consisting of Cr,p,

as defined earlier, and (z Re(z) p,1 Im(z) < r}. If Re(w) > p, then

for sufficiently large r

'- "'" 1 (z)dz
'w) -- 2ii 1r W-z (2.10)

r,p

For z p + rei -w/2 < e 8 w/2,

_." . I I 1
Re(z) - 0 Re(z) - p + (p-A) r cos 8 + (P-A)

is bounded and tends uniformly to zero as r+- each sector

-w/2 + 6 < 8 < w/2 - 6, 6 > 0. Using (+) together with the fact that

.- uniformly on Crp as r -1 z-pj tends to -, the integral

4 over Cr,p is seen to vanish as r+- and (2.4) follows from (2.10), the

. N"
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convergence of the integral in (2.4) again guaranteed by the Plancherel Theorem.

The proof for Re(w) < -a is almost word for word the same so we will regard

the proposition as proved.

For g c L2 [O,-), p > a, the usual Laplace inversion formula shows that
P

... .p+iA zt
g(t) - l.i.m. - j e (z)dz.

-.- A1ri p-iA
For t < 0 a standard argument shows that the integral vanishes. For

g c L2(--,O] we have, for -p < -a,

I -p+iA zt
g(t) - l.i.m. 2T J e *(z)dz.

""A -p-iA

and the integral vanishes for t > 0. Thus, letting

r =r n {z jIm(z)I 4 A} (2.11)".- •p,A

we may write

g(t) - m' 2 Ir eZt *(z)dz. (2.12)
A+m p,A

Let p be a cardinal function as defined in Section 1. We define Tp to

be the subspace of T consisting of functions * such that

O(z) p(z),(z) (2.13)

is an entire function and the identity

O(z) ,, 2w Ir P -z
, p

is valid for all z in the open strip interior to rp, p > a as defined for

S.. p in (1.4).

The results which we present next concern the structure of Tp as it rela-

tea to * and the cardinal function p.

Theorem 2.2. Let # c *, let p be a cardinal function, and let a be as

specified in (1.4). Define

'I.

¢.. ..

,,*. - .,. .- , --- , , , ." ..- . .- -. .-. . -. ,-.,'. .. .-. . .. . . >"i>" " .i( >( :.'.
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(P4)(z) -(z)/p(z) =(z). (2.15)

Then 4# c ?PC? and for every p > a there is a positive p0  such that

(z - dz 2 2 (2.16)

Proof. Let p > a and let Re(z) > p. Looking at Re(z) > p first, we

have

" "-2wi Ir z-c
.. . , r, p

where rrp is defined as in the proof of Proposition I.I. Let 4(z) = f)(z)

as in (2.1). Then with z =Ein

-' *(z) 2 1 et dt If 2

1 (e2w _ e-2 w&) 2-i z, (e - Nf l r-,L J

so that

'I n )1/2".,I O(z) I ew E /(l + I El
with MO depending only on *, not z. Using this with property (1.4) of p

and applying the Jordan lemma we see that

lm I c  C -

r + r,p

-' .- so that

*(z) -= j I+d -z

*' For Re(z) > p > a the corresponding integral over rp, the left hand portion

of rp, oriented downward, vanishes and thus

.- '-',- 1 ;)dC (2.17)

' *(2) - - Ir 4-Z

A similar argument shows that (2.17) also applies for Re(z) < -p < -a. Hence

condition (2.4) for 4 to be a member of T is satisfied. Condition (2.5)

.4 4 .
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follows immediately from (1.2) and (1.4). Since p(z)*(z) =(z) is entire,

there remains only the proof of (2.14) to show that ip c 'p. Define Rp A  to

be the positively oriented rectangle with corners ±p±iA. For z interior to

RpA we clearly have

-(z) f L~ R () d • (2.18)
*" -.. p,A -

From the bound (1.1) we have

( AIr~z)' = r+iA, -p r 4 p

and a similar bound holds for C r-iA. Hence, letting A+-, (2.18) Becomes

O(z) = C dC (2.19)

2ri 1r ;-z

which corresponds to (2.14). We conclude * c T p and the proof is complete.

The next theorem is a complementary result to Theorem 2.2. Its proof is

only slightly more difficult.

Theorem 2.3. Let * p and let

(z) p(z)*(z) - (P,)(z). (2.20)

Then c 4 *.

Proof. Let a be as specified for , preceding (2.4). For I Re(z) >

- > p > a, (2.4) and (2.5) combine, using the Schwartz inequality, to show

that for some Bo > 0

Since this is true for every > a, using (2.20) with property (1.3) of p we

have

"I°
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I*(z) 4 M Me' z -ir j > > MaX(a, a), (2.21)

a specified for p as in (1.4). Then using (2.5) with property (1.3) of p

we have

OW. 1 21 dz( N (M+)2e2', > A > (2.22)
P

The inequalities (2.21) and (2.22) establish (1.1) and (1.2) for I Re(z)

S F > A > i. There remains the question of the behavior of *(z) inside a

strip I Re(z)l 4 0, 0 > A in order to complete the proof.

Let the right and left halves of rp, oriented upwards and downwards

respectively, be denoted by ro, ro, respectively. Define

+( = + Cd , Re(z) < p (2.23)
+. 2wi r+ -z ''

d d , Re(z) < -p (2.24)-" 24 n: -z

Since * c L2(rp-) , we have

- Jaeztg(t)dt, J 2 pt g(t) 2dt < (2.25)

0 0
and

0p.-*(iri) d = 2r'Ig(t) 2 . (2.26)
~Similarly

jO e2- t h(t)I".'-'.'-'++(z) " ] e-Zth(t)dt, d0e ~) t < -, (2.27)

-m

and

*+(in) 2 dn = 2 I h(t) 2 dt < (2.28)

Condition (2.4) for * to be a member of Tp implies that

" *(ini) - *+(inl) + (in), - < n < . (2.29)

1

* - *

%**

*% '- % """*-" . "- " '("""- - . . -"""" . ,,, . - e"""" - # - - - . - Y% """""-"""". . . "-". . *"""""". ".
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From (2.26) and (2.28) we conclude that there is a function f e L2(-,- )

such that

gin) = l.i.m. A e-int (iB)d. (2.30)
A+ -A

and

f _t) 1.,.m. ]A e -int (in)dn

From the identity (2.29) and (2.23), (2.24) we conclude easily (since E

L2ro) that I(z) is uniformly bounded in the closed strip IRe(z)j t= I 1 .

Let CA be the closed contour, positively oriented, consisting of the imaginary

axis from -iA to iA and the right half of the circle z = A. Define

+ ( -zt O(z) dz
w(t) = T JD e z-T--i--

A

Letting A+-, using the bounds (2.21) and (2.22) for * and the Jordan lemma,

we conclude

1 = int 0(in)w(t) I e i
27r ~ ~ -. +l

is identically equal to zero for t > w. But the relationship of the Laplace

transform to convolution shows that

w(t) t e-(t-s) f(s)ds
0

and hence that

0 w'(t) w(t) f(t) a.e., t > w

Thus we conclude that f(t) - 0 a.e., t > w. A similar argument shows

f(t) 0 a.e., t < -w and we have, ferom (2.30) and the identity theorem,LiWi zt2
O(z) J e f(t)dt, f e L2[-,,r],

-W

valid for all complex z. Hence 0 e 0 and the theorem is proved. For 4, T

we define, for p > a (cf. (2.3)),

......................................................
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10 0 2 z (2.31)
p

Then it is clear that the map P defined by (2.20) maps TP onto 0. Its

inverse on 1, P-I, is defined by (2.15). It is clear that both P and P-1

are bounded with respect to 101p in $ and l*' p in Yp. Since $ admits

a Hilbert space structure, it follows that T does as well.

One of the most important results of this paper has to do with the rela-

tionship between I Ip on Tp and another norm on the same space, which we

refer to as 1 10. The definition of I 1, depends on the following result.

Theorem 2.4. Let *c 1, 4' T, and let f c L[-r,r], g e LA -

A > a, be such that * = f, 4 =. (cf. (2.1), (2.7), (2.8)). Then with

21 2 r *(z)*(z)dz,
P

<#,4> is independent of p for p > A > a and we have

<,> = j f(t)g(t)dt. (2.33)
-T

Proof The formal argument is very simple:

<@ > = 2 --- Ir (z) *(z)dz = -2ii Ir 4eZ f(t)dt*(z)dz
p p

if(t) Jr eZt (z)dz dt = ]u f(t)g(t)dt, (2.34)
- f t .4J p -W

the last identity following from (2.12). To make this argument rigorous one may

define (cf. (2.11))

=I zt

gA(t) = 2i JrpA e '(z)dz

and one immediately has

J, f(t)gA(t)dt = ISA---i" Jr p, (z),(z)dz.
p,A

4 . . . - . -. . . . ... . . ....
",4,. , , """''. . "''""""""""' ." -". S '. . ' . ,. " ' . '. x . .. . .. , ,.. ,".'-. ,- ,. , . , .. . . . ,. . - .
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*. Since it is well known that gA converges to g in the L2  norm on [-i, ]

-*£ and O(z)*(z) e Ll(rp), the desired identity follows immediately. Since the

. right hand side of (2.33) is independent of p, the same is true of the right

hand side of (2.32), which is well defined for all p > a, a as defined for

- preceding (2.4). We define a semi-norm on T by

:'"" I< , >
sup i~i

0*0

where

20 2-

is equivalent to any of the norms p on 0, p > 0. Since the Plancherel

Theorem gives

E 0 TL 2 [-7r,w] =  If I L 2 [_-n,W]

and (2.33) obtains, we see that

" .' = 1. upI' f(t)g(t)dt

14i1sup WT-- 0 /2,-w fEL2 [-N,w ] If' L2[_,w,

If 1*0

' Igi L2 [-,7r] (2.35).;.:-2 .f"

Thus 1I0 = 0 if g(t) = 0 a.e. in [-i, ]. Also, since the Plancherel

Theorem gives

ui 2  2( Je-2pt g(t) 2d + j 0 e2 ptI g(t) 2dt)
0T -00

it is clear that

2 1j ~t 2wpIrn
dt 4 e(2.36)

..- "", , tU2- ,, I , 1I g(t) 2 dt ( e 2 'i EYI5  •(236

* a. A principal result of the next section will be to show that, restricted to Tp,

I I is a norm and an inequality in the reverse direction of (2.36) may be

obtained. We make a start in this direction with

'M :. %'A

, ,>1" .,*. -- :,S-, " ', ' .,-* _-._'.' -.- ,- _ .r,- *** *,- ,*.-.. --.. ..-. .-. -,-,'- - -. - . -. ..'- .~-.. .... .'. -. -. -
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Theorem 2.5. If e Vp then

'I *I= 0 =* (z) 0.

Then I I is a norm on

Proof. If j * 0 then for p > a.

r 0(z)8(z)dz 0, v e 0. (2.37)

Since Theorem 1.3 shows that for some * c 0

"-z) = (z)Ip(z), (2.38)

(2.37) becomes

O(z)
Jr -(z) (z)dz =, 0 e0. (2.39)p(z)

P

Theorem 2.3 also shows that as O(z) runs through 4, e(z)/p(z) covers all of

Let C be a closed contour in the complex plane not meeting any zero of

* p(z). Then with q(z) an arbitrary polynomial in z,

• (z)  q(4) I d ,
z- p(€)

defined for z exterior to C, is a rational function of z which belongs to

p and consequently has the form e(z)/p(z) as in (2.39). For another con-

tour C, just outside C and enclosing exactly the same zeros of p(z),

(2.39) is readily seen to imply
I 1. q(?d dz

0lo Y(z)*C(z)dz dez J
C

S q(0) 1 J, f(z) d - q(4) ({) d.
p()2C - P(W

Since this is true for every such C and every polynomial q we conclude that

#(z)/p(z) is entire. But since *(z)/p(z) lies in T pCP, (2.4) shows that

for p > a

d,
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p(z) 1 Jr - p(I ) d•

p
The fact that *(z)/p(z) then shows that *(z)/p(z) = 0 for z outside the

closed strip bounded by rp and thus, by the identity theorem,

*(z) = (z)Ip(z) 0,

proving the theorem.

N,'

.-
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3. The Internal and External Spaces.

As previously, let r denote the contour consisting of the two lines

Re(,) = p, Re(X) =-p, positively oriented, and let the two halves of rp be

denoted rp, rp. The following theorem is well known ([H],[I])•

Theorem 3.1. Let h+ - h+(p+io) c L2(rp). Then there are uniquely defined

functions h+(z), h+(z) defined and analytic in Re(z) > p, Re(z) < p, and

lying in the Hardy spaces H2 (Re(z) > p}, H2 {Re(z) < p1, respectively, with

boundary values in L2(rp), such that

h+(p+ia) = h(p+io) + h+(p+i).

Moreover

2+ 2 -2
Eh+1 L2(I ) = h+ I r + Ih+I2 r+ (3.1)

PP P

While we do not offer a formal proof, it may not hurt to remind the reader

that

+ h + ()dC
h (z) = Jr+  Re(z) > p, (3.2)

P

h+(z) - r+ h , Re(z) < p, (3.3)
-~ p

the orientation of rp being upward in both cases. Moreover, there is a unique

function g+ satisfying

suce-2Pt g+(t) 12 dt < -•

such that h+(z) (3g)(-z), Re(z) - p, i.e.,
= l~im. A-iot -pt

h+(pi+a) Ji~m. JA e e g+(t)dt
A+ -A

A -(p+ia)t= li~. _'e g+(t)dt.

A- -A
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while h+(z), -h+(z) are the right and left Laplace transforms of g+:

+ ,A -zt
h+(z) l.i.m. j e g+(t)dt, Re(z) > p

Aw 0

-0 -zt
h (z) = l.i.m. e g+(t)dt, Re(z) < p

A+in -
In the same way, if h- = h_(-p+io) c L2(rp) we may decompose h- as

h (-p+io) - h+(-p+io) + h- (-p+Da)

where hi, h- lie in the Hardy spaces H2 {Re(z) > p}, H2(Re(z) > -p}, respec-

tively, and

,'..h+z): - Jr --- d , Re(z) > -p, (3.4)

+ 1, h_(?)

h-(z) = d, e(z) < (3.5)

,,- r - - r- " (3.5)p

2 +2 2
Ehi1 L2(r-) 'h+..r + 1h I r (3.6)

2'" :t + -g

Now let h L2(rp) and let h+, h- be its restrictions to r , r

respectively. Define

h(z) - h+(z) + h+(z), I Re(z) j < p ,  (3.7)

and we have, from (3.3) and (3.4),

h"(z) = -hJ dC. (3.8)
g.z) - 21i Ir -

We will refer to h as the "internal part of h relative to rp". (If h is

defined originally on a set which includes rp for various values of p it is

necessary to refer to the particular rP in question. If r is understood,

we will simply refer to h as the "internal" part of h.) We will write (3.8)

as

o A 4.



-19-

and designate

H2 r P {hlh C L2(r)= T(L2(rp))

as the "internal Hardy space" (relative to rp). We define

h(z) = h+(z) - ), Re(z) > p,

h(z) - h,(z) - h+(z), Re(z) < p,

and we have, for I Re(z)l > p

h(z) h() d;, (3.9)
h z)-w i Ir z--r

P

as may be readily verified. We write (3.9) as

h

and refer to h as the external part of h (relative to rp). The space

1~~ A2 1 I. 2 A2
2(rp) Thl h L )} T(L (r )

is designated as the "external Hardy space" (relative to rp). It is clear that

h(z) + h(z) - h(z), z E r (3.10)
so that P

+ A^

It is easy to see that T and T are both projections, onto H(rp), P (rp),

respectively, but that they are not mutually orthogonal. Using the properties

of the Hardy spaces one may see that

+ L2( ) 'h+' L2()
p p

lhS Ihh +
-L

2( r+) Jh L2(r-)

P
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and from this we have, using (3.1), (3.6)

1hi L2(r p ) < IbhI L2(r ) + Ih+l L2(r )

< 2(lh+E L2(r-) < 1h+! L2(Ir+)) • 2 Ih L2 (r ) (3.11)

+ P

Ih 3i hE 2 ( + Ihi •(.3

+ Ih I L2(r-) r ho L2(r-)
p p

A fNaI L2 r) < 1 1 L2e(uc) + 3h L2(r)+ Ih+1 L2(r )

t(n L r+lh L 2( r ) + eh+l L2( -f) r C 2 b he L2 (r (3.12)

.h4(r) prvdd p p .Sc euti aiyotie sn

On the other hand (3.10) gives

thE L2(r P L2 lid + 3hI 2Z (3.13)

A final point in our elucidation of the properties of H2(rp) and H2(rp) is

this: if h e L2(rp) and R, h are its internal and external parts,

then UhI L2(r.) and Ihl L2(rT) can each be uniformly bounded in terms of

* 1h 2 rP, provided 0 4 0 < P < T. Such a result is easily obtained using

arguments of much the same type as those used above.

Our next task is to identify the Hilbert spaces I and Y with subspaces

of i2 (rp), 2 (r.), respectively.

Proposition 3.2: Let * c 4, so that *rp e L2(rp). Then * so that

#IrP - rp C i(L 2 (rp)) - j 2 (ra)•

Proof• This follows from (3.8) and the fact that (2.14) is valid for all

i9 ,*
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Proposition 3.3. Let 7 £ T, so that r. e L2(rp) for p > a (cf. (2.5)).

Then 4 £ 4 so that ?I rp P T;T(L 2(rp)) H2(rp).

Proof. This follows from (3.9) and the fact that (2.4) is valid for all e T '.

We see then that for each cardinal function p, the map P defined by

(2.20), and its inverse, p-1, are external + internal and

internal + external maps, respectively, defined on L2(rp).

The following theorem is the basic result concerning "interpolation" of a

function f C H2(rp) by a function f e 0 on the zero set, Zp, of a cardinal

function p.

Theorem 3.4. Let p be a cardinal function and let p > a (cf. (1.4)). Let

h e H2(r.); thus h may be extended into Int(r) via

h(z) h") dC. (3.14)z- J r C-z
p

Then there is a unique 4 C 4 such that (0 - f)/p is holomorphic in Int(p).

Moreover, there is a positive K, independent of h, such that

I p L2(rp)" (3.15)

Remarks. The term "extended" has a technical sense here because hl r is the

limit in the L2-norm, of ht r., p < p, as p +p.

The term "interpolation on Zp" is used advisedly since for each zero X

of p, of multiplicity p, *(X), *'(X),', *-l(X) must agree with h(X),

h'i), ..,h W-l(A), respectively.

Proof of Theorem 3.4. The uniqueness is quite straightforward. If fl, *2

were two such functions in 0, we would have

N.0
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* -$2 01-f 02 -f

P p P

on the one hand in Yp by Theorem 2.2, and, on the other, holomorphic in
p

Int(r0 ). The formula (2.4), valid for c T ' and z external to rp gives

0t Wz-02 ( Z )  0 @(0)-02 ( 0
p(z) =_2_-- Ir (de .

p

The properties of 0 C 4 and p, together with the holomorphicity of 01-02)/P

in int(rp), show that the integral converges and converges to zero. Thus

( Z)  2(z), I Re(z) I > P

and extends, using the identity theorem, to all z.

For the existence, we let rG be a contour similar to rp but with

a < a < p. For I Re(z) I> a we define

h( ;)d C 3 . 6F(z) = J = . (3.16)

The integral is convergent; p is bounded below on rp and the square integra-

bility of h on ra is a consequence of its membership in 1i2(r0). Then,

still for I Re(z) I > a, we define

.(z) - p(Z),(z) - p(z) '- Jr (z)dp( (3.17)

a

Then we define 4(w), Re(w)j < p, in agreement with (2.14), by

*(w) "'(z) dz = r(,) (3.18)

.(w) -J p2wlJ

From (3.16), i £ R2(ra), so * e L2 (rp). From the properties of p, *, defi-

ned by (3.17), is in L2(rp) and then r - H2(rP).

I'Let w satisfy a <1 Re~wj<P.Te''(edTe

C,,.,; - . ' -7 ' , ' , . ' ' , . ' . ,. , , ' ' .. ' - , . ' ' -' ' . .. -,., ' , ' - -. . . ' - '. . ' . - ' ' . - -,
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--. (' = 1 (z) dz =- J r p(z) __h(_d__d

1.4,27 ;(W) O(Z) dz 4w p ~dz
2- 1 r z-- 2r Pz-z r (z-)p()

2 r (w-;)p() r Z-w z-r

= p(w) --j r (4-c( iT Jr dC (3.19)

4, Since h s H2(rp), we have also h c H 2(r.). Since w is exterior to ra

I ! h(C) dr, 0

27i Jr W- d
a

and we therefore have, from (3.19),

;(w) - p(w) 21-i( J ( ) -O()

It follows that i(w) provides an analytic continuation of *, as defined by

(3.17), into the region Re(z) ( p. Thus 0 is entire. That s 0 may be

deduced from #(z) - *(w), o £ H2(r,), I Re(z)l < p, together with

*(z) - p(z),(z), I Re(z)j > a. In particular, (2.14) follows from (3.18) as

soon as * - ' has been established.

There may be some question about the change of the order of integration in

(3.19). Let ro,A  be defined as in (2.11) and let Rp,A be defined as pre-

ceding (2.18). Since *(z) as defined by (3.16) is in L2(rp)

1ir prz) h(C)d d = 2 p(z) h()d dz
1~~d -r -r(- p lira Jr Pz-) Jr (z-O)P(M

4w 2 Jr PP-W Ja Zo p 4w A+aD p,A o

rI h(r) P(z) -P(z) dz de (3.20)
4v 2 A+-= J 0OM J ,A - C

because

p(z)h(C)
(z-w)(z-Op(M)

is integrable for c e r., z c rpA. Then we note, since r. is interior to

r,. that with PAM -p0 IC1 < A; P(0 0, Ir.I>A, and A>lwl

. . . . .. .. - . . • - A . - " . . '% .- . ." , - -
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..-L. IR dz = p(w) -p
2iRz-w A-

Since h(t)/(z-C) is integrable on fa

Sim h(r)pA(r)d h()lir*a a(-p ,w-x d

Since it is easily established that

A. IR p,A -J p,A - z-4 j

we conclude that the last expression in (3.20) converges, as A tends to =,

to the corresponding expression in (3.19), which is all we need.

Again for a <1 Re(w)j < p we note that

*(w)-h(w) I h(C)d - h(w)p(w) =2w- Jr a(W-O)p(M -p(w)

But one shows quite readily that

h(w) . I h(.C)d + h()d
p(w) V2Y Jr (w-)p() + 2wi Jr (w-;)p(C)p 0

since h(r)/p(4) is holomorphic in the region o <1 Re() I ( p. It follows

that

f(w)-h(w) _ 1 h( 4)dp(w) 2 z-- Jr P(;-w)p(O)

Since the right hand side defines a function which is holomorphic for

IRe(w) 1 < p, the left hand side must be holomorphic there as well.

Finally, there is the bound (3.15). This follows immediately from (3.17)

and (3.18). For h(;)/p(Q) lies in L2(rp), and, since

1 h(Ci)dc

2 i Jr (w-)p((

is the external part of this function, we see that *I r 0 e L2(rp) and may be

bounded in terms of h L2(ro), using the fact that p is bounded below on

L2.-(1

,-..x.- ". " .. .. ,. ,,.. .'. s. ,.,.'.>. x .,; . . . .. -'>. ..-..-..-'.'.-.. ..-. ,..,- .-.. ;..- 4

..._ , _ .- ..4. .' ' , > - . i . ' . - . : - ; '
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ra  for a > a. Then we note that *, defined by (3.18), is the internal part

of pt relative to Op and, using the fact that p is bounded above on rp,

we bound 10P P in terms of l*IL2(rp), which in turn is bounded in

terms of I hi L2(r)' and that may be bounded in terms of I hl L2(rp) , which

completes the proof.

Corollary 3.5. Let h C H2(u.) and let * be constructed as in (3.17). Then

+/p e T and for every 6 e 4.

I O(z)h(z)dz .(z_)(z)d -
2- Ir p(z) 2) Jr p(z) " (3.22)

Proof. The conclusion *(z)/p(z) e p follows from Theorem 2.2 since e 0 *.

For a<0< p wehave

I 6(z)O(z)dz 1 d; dz
2i Jr p(z) 4 1 !r r(z Ja (z-Op() dp p a

.. ~ ~ ~ ~OLz !~i.j~5 dz dl C h(C)6(C)dC4w-2r h(8) r 1 J

I- B(z)h(z)dz
2vi Jr p(z)

The change of order of integration is established in much the same way as in the

preceding theorem. The last identity follows from the analyticity of Oh/p in

the region a <1 Re(z) < p together with by now familiar estimates on the
integrand as + on.

Theorem 3.6. For any cardinal function p there is a positive number Kp

such that for all c Tp (and p > a, cf. (1.4))

1*1 4% Kp 1*14 . (3.23)

Hence I Ip and I 14 are equivalent on Tp.

• .5'.'., ' . . ,,. . ... . ,.,, . ' ., . . . . . . , : ,, / j , .,, , " , ' - . . , " . : . : , . . . - - / • .
Ir. 

-
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Proof. Let c T and let P > a. Then

2 1
1 p = 

3r I4,z)i d., ~r1  .(z)h(z)dz

where

:ii-i I dz z), z e+rp

h(z) = 2wi(z).'.-.dz

Clearly h C L2 (rp) and hence can be written

h(z) h(z) + h(z), h E H2(rp), h c H2 (rp).

We claim that

r j(z)h(z)dz 0.
P

For if T > p we can easily show that

Ir *(z)h(z)dz = Jr ,( ) (C)dC - (cf.(3.9))
PT

1h(z) dz d

Jr lJ(z) 1 *" ) de dz 0

r 2 p

because z on r is external to the region Re(c) > o in which (G) is

analytic and I*(r.) + 0 uniformly as + The last property is any

easy consequence of

1 '(w)dw
= T 1r -w

P

valid for Re(G) > p. Thus, using Corollary 3.5 with '(G) expressed as

*() = O(M)/p(c), e C 0,

and * related to h as in Theorem 3.4 and Corollary 3.5

-',

.
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12p 1 1 6(z)h(z)dz
- J ,zh'(z)dz = J

27ri r p(z)
P P

v (z) (z)dz

(cf.(3.22)) 21-- Jr p P)(Z) =

, 1 141 I B nIp NI0 (3.24)

with B independent of * since $I10 and I$Ip are equivalent. But

IhIL2(rp) can be bounded in terms of l*Ip (see (3.11)) and (cf. (3.15))

I Ip can be bounded in terms of IhIL2 (r P). Hence there is a positive

number Kp, depending only on p, such that

Using this in (3.24) we have (3.23) and the proof is complete.

Thus we see that Yp, equipped with any of the norms I Ip, p > a, is

a representation of 0', the dual space of 0, duality relationship being

expressed by <c,>, T s 4, P ,

S- A representation of the dual space 0' independent of p may be obtained

in the following way. Let * e T. Let p be a cardinal function and let p > a

(cf. (1.4)). Let

.(z) = h(z)/p(z)

and we see, since p is bounded below on rp, that h e L2(rp). Write

h = h + h, h e H2(rp), h e Ri(rp), and we see that for every 0 c f

%% <0, 1 O(z) h(z)dz O(z)h(z)dz
i, -fT Jr p(z) d 2wi Jr p(z)

P p
p #(z)

± w Jr 0(z) -8- dz

with * constructed from h as in (3.17). We know that P Cli T. Define

equivalence classes in Y by

" "" " ,, e"." :" " " '"' ." V-..... .''.' "...,,.:. .. ., . . . . " ,.. "* "" "" " - - -
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.(.for all c

Then

'('l l, = ,1 'f E {,'}

defines a norm ,, on V. Given a cardinal function p, each equivalence

class {*} contains exactly one representative */p from T and

"{4 " = I4'/P I ,

so the map

{} + /p E {4}

. is an isometry between T and p relative to I{f}10 and lI/pI 4 .

Defining

. with the norm I I is a representation of 0'.

There are other subspaces of T, besides the space T p which we have

described, for which the result of Theorem 3.6 remains valid. Let a > 0 and

let

z C (z~ Re(z) a}

consist of a sequence of numbers:

:-v' Z - {zk[- < k < "

with the property that

i-f (Im(z k ) - Im(zk-l)) - d > 1.

Let Yz be the closed span in T of the function

;,...,. %.) - , -- < k <-.

We have, of course, for Re(z) > a,
-pe

Z-kt
. Sk(Z ) - (.lek)(Z) , ek(t) - e

p,.."

'-

',,.4 ,...2g..;'.: :,'..? ., ,. ". .. , -".-:', .:-', ,..-'-..... ,.-.,.,- :-.-...-- :' ,'.":'-5,."i2-'.
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Results due to Ingham [J] and Duffin and Schaeffer [F] show that for each

sequence {ck} 12  the series

zkt
g(t) .=_ cke (3.25)

converges in L2 [-r,W], and there are positive numbers C, c, depending only

on a,d, such that

c 2IL[ ] ckt 2 4 C21 g 1 2  (3.26)IgIL2 [_ ,k- L2[_ ,"f ]. I 3.2

We know that IL1 is equivalent to 'ggL2[_w,]. Therefore for some other

numbers C, c, also positive, with

cc
i'iZ(z) -Z , (3.27)

S =-m z-zk

this series is convergent in T with respect to I I' and

C 2 4 = 1 2 4i 2 1 .12 (3.28)

For each integer L., (3.25), (3.26) show that for t e 1-r,l

91gt(t) - g(t+21w) (k --(cke k e (3.29)

converges in L2 [- w,] and

-2 C 2 2[-w,] " k cke i12 4 c Igtn L2[.ww],

*so that

From -4t a -2 2 2 4ta C2  2":. .. e c ,g, L2[-w,w] 4 c ck1, 2 e C g I L2[.. ,wl•

From this we conclude that (3.29) defines a function g(t) on (-iw) such

that for any p > a, g c Lp(--,-), i.e.,

eptg(t) C L2 [O,),

ePt g(t) C L2(--,O],

Then, clearly, the series also converges to * in T with respect to I IP

and there are positive numbers C, c, depending on p, such that

. ,, + .,r ,.. 4 .. *-,*,,..--.,-*.., *. . .,,.,,.,- , ,,.. _ _ *,' , -, *.*-c .-... ."
" '

" . .- .- _-.. .. .- _ . .-. ... .
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a-2 II 2  , cl 2 ,,2 (3.30)
P k=- k P

Then from comparison of (3.28) and (3.30) we have

Proposition 3.7. The subspace Tz C T consists precisely of series (3.27)
Swit ck e 12, the norms 1 14 and Ip are equivalent on Tz  s closed

" with respect to the topologies derived from I Ip. Moreover, the map

I I 1 2
T : {ck} E + * C T

_. '. defined by (3.27) is bounded and boundedly invertible (on Tz ) with respect to

I{ck)m2 and either II or IIFp, the bound depending only on d and

a.

This result will play an important role in the next section.

%'p

'.,p,

U,..

V - ' ' , ," - . """ " " ' ' " " - ' - r '""' '. " ' . .. -^... ' " "'''" '""
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4. "Regular" Nonharmonic Fourier Series in L2 IF

We have defined in (2.7) the Laplace transform of a locally square

2
integrable function g in Lp(

-(z) ( g)(z).

Then with *(z) = (Uf)(z), f e L2[-r,,], we have seen that

= f(t)g(t)dt. 
(4.1)

As a consequence I*10 is equivalent to gIt _2[-,,]- When p is restricted

to lie in Tp, we know that 1*1I is equivalent to 1 1p, which in turn is

equivalent to

::7:jo e g(t) dt + ]- e-2 Pt gt) 2 d

g L2(-.,")

We see then that, for g e- -1 'P, Igi is equivalent to IgiL2[_ ,w]*

.,*] Proposition 4.1. If p is a cardinal function, Z-lTp is dense in L2 [-rr].

Proof. Since (2.33) is valid for each f E L2 [-r,w] we need only show that

0<,*> - 0, for all * c T (4.2)

implies * " 0. But for e T p

. 4'(z) - O(z)/p(z), e C ,,

and then for p > a

1 (z)6(z) dz <8,1 >. (4.3)
<, 2wi Jr p(z) p

If (4.2) is true, Theorems 2.2, 2.3 show (4.3) equals zero for all e c 4 and

then Theorem 2.5 shows that *(z)/p(z) 0 which implies O(z) 0 and we

have our result.

5,-". ' '.% -"-' '< '' - 5'3 5N. .; -:'o€4 €-. 2 "'- -£'-.-.-;'J;'w '¢ ".-"--' ".-- ."%



V1k. -T7

-32-

We will see now that this proposition is really a statment about the

completeness of certain complex exponentials in the space L2[-i].

42 Let the points in Zp, the zero set of the cardinal function p, (Zp may

be shown to be non-empty quite easily using familiar theorems (cf. [KI) about

entire functions) be indexed as zk, k e K, where K is a countable index

* set, and let uk be the mulciplicity of zk  as a zero of p. We denote by Ep

the set of generalized exponentials

z t zkt 1k-1 zkt
e te . t e z k C Zp} (4.4)

and by [Ep] be span of these functions in L2 [-r,w]. It will be recognized

immediately that

[Ep] = -l(Rp)

where Rp is the subspace of Tp consisting of rational functions

a(z)
P(z) = r(z)

where a(z), T(z) are polynomials in z with deg a < deg T and p(z)p(z) e

is entire. The completeness of Ep in L2 [-w,w], i.e., the fact that

[EZpl L2 [-r,w]

is equivalent to the denseness of Rp in VP by virtue of the remarks which we

have made above. Now Rp is complete in Vp just in case, for * c
< =,p> - 0, p c Rp , -) - 0. (4.6)

That is the case in just the argument already given in Theorem 2.5 with the

rational functions *C in place of p: if (4.6) were true then */p would

be entire and hence zero, so that 0 0. Thus we have

Theorem 4.2. If p is a cardinal function then Rp is dense in 'p; equiva-

lently, (4.5) is true, i.e., Ep is complete in L2 [-,rj.

LIN" . -. '-,' ', -"- . " ,' - .-. , - -. ,.-
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This is, of course, not a new result (see, e.g. (E], [F), [K]) and is included

here simply to make our presentation self-contained.

The functions (4.4) comprising Ep have the property of strong linear

independence in L2 [-w,] just in case no such function lies in the closed span

of the other elements of Ep; in the context of 0 and Y this is equivalent

to the constructibility of the Lagrange functions gk,v c 0, k c K,

0 v < Uk, with the property

q k,v (z£) 0 X k, j v

I£ =k, J v.

Since it is easy to see that these can be constructed in the form (the cv,n

are complex scalars)

q (z)= p(z) , n n

n-l (z-z

we will regard this strong linear independence as established.

We see, therefore, that Ep forms a basis for L2 [-w,n] in the sense of

constituting a complete, strongly independent set. A decidedly more ambitious

enterprise is to give conditions sufficient in order that Ep should be a
oSchauder basis for L2[-,w], i.e., denoting the elements (4.4) of Ep by

ek,9 ,k e K, 0 < v < p, that each g C L2[-n,w] should have a unique con-

vergent expansion

gkl (4.7)

g kK v=0 g ekV (7

the gk1V being complex scalars. The uniqueness is already in hand, actually,

because it is easy to see that if it were violated for some g e L2 [-W,w] the

L-*

i ,
I~
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ekv could not be strongly independent. Thus it is the existence of a con-

-- vergent series as shown in (4.7) which is the main question. It appears to us

that the most usable sufficient condition, stated in the context of our develop-

-* ment, is the following. We recall (INJ) that p is almost periodic in a strip

Re(z) ( 0 just in case for each e > 0 there is a positive number £ =

_- t(,8) such that in each interval [c,C+L of the real axis of length L > I

*there is at least one number n such that

p(z + in) - p(z) < c (4.8)

uniformly for all z such that I Re(z) .

* . . Theorem 4.3. If the cardinal function p, with related a as in (1.4), is

almost periodic in some strip IRe(z)j < with 0 > a, then E isa

Schauder basis for L2 [-w,n].

Proof. Let a < p < B and let CO  be a simple path joining rp to r which

' does not meet Zp. Then for some co > 0

p(z) I I 0, Z C0

" Let 0 < c < c0/2 and let X(c,O) be selected as indicated above. Let

L > I + a, where 6 is a fixed non-negative number, and for each non-zero

integer k - tl, t2,--, let nk £ ((k-l)L + 6, kL] be such that (4.8) holds

with q replaced by nk- Then let

Ck = {z + ink1 z C C0 }, k = +I, t2,-.., (4.9)

and it is clear that for all such k

p(z) > C. z • C. (4.10)

For each positive k let rtk consist of the portion of r between Ck_1

and Ck and for each integer pair kj, k > 1, let rp,kj be the portion of

r between Ck and Ct; thus rpk = rp,k,k-1. Define also

Nr,-A
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R p,k r p,k + Ck - l' k = 1,2,3,--.,

R r + C - Cy ,X ±,±,-- k>
p,k,l p,k,t - ,+2,, k > .

For z outside Rp,k,t, which includes I Re(z)l > p, define

.-.. 1 'P d .
.. *k, 1( z) 2Ti IJR C-Z

.9.(z) . p,k,.

Extended by analytic continuation to C - (Zp flInt Rp,k,z), Pk,£ Pp

Similirly define Ik,t e T, but not necessarily to Fp, by

(. I(C) d;.
.- i p,k,. r-z

rn, : Let p < a < 8. It is an easy consequence of the properties of the H2 spaces

in a half plane (see e.g., [B]) or the Carleson measure theorem ([L], [MI)

that

lim I - 0'k, a 0. (4.11)_:::.::k+-

: Since *(z) = *(z)/p(z), * C 9, the Riemann-Lebesgue lemma shows that

lim ( sup l({) ,- sup ck =0

Since

(c k+c 9) .(c)

k 1(z) + k,L(Z) I 2 ld(z,r k)• -",p,k,l

where t(C) is the length of C and (I S distance)

. d(z,r pk,) min I -Z
.', ,k, t

0 it is clear that

":'"%..... lim 1'1k,L ' k,Llo = 0

k-6o

and therefore, from (4.11)

V',.

-. "
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I im P - 'k,L 1o =0

.k-

If we let

= £g' k,L = £gk,,

then *k, t £ Rp gk, I Ep. Since l*-*k,jl a  is equivalent to

1.7,-9k, XIL2[_,w and since

k -
k,g 

g =-1

j= t+l
'd" c.R

j 2wi Jr p• p,j

we have

v.j=_~ j' j

convergent in L2 [-w,wJ, and the proof is complete.

We will have more to say about the significance of the assumption about

the almost periodicity of p in the concluding remarks of Section 5.

Series in the functions ek,v described by (4.7) have been referred to in

the literature as nonharmonic Fourier series. Much of the interest in such

series centers on the question of whether or not they form a Riesz basis for

L2[-w,w]. A sequence of elements, {xk}, in a Hilbert space X forms a Riesz

basis for X if it is a Schauder basis for X and, with

x k -' (4.12)

k£K

the unique series representation of x in terms of this basis, there are posi-

tive numbers b,B, independent of x, such that

bI b-21 x 12 k Id I 2 (4.13)
kcKIt is evident that {xk }  is a Riesz basis if and only if the map from

{ck ) e 1K to x e X defined by (4.12) is bounded and boundedly invertible.

L . ...*,.. * , ' : >, '. .' ... . . ..* - . .. . . . .. .. .,.. .. . .. . . ".. .-. .. . ..- .. - .- . . . - . .. - ..- .- . .,. - ,.-.-
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A generalization of the Riesz basis notion is t.at ot a -uniform- -JoL'-

position of X. Suppose Xk, k c K, is a sequence of subsoaces oi X. If

every x E X can be written uniquely as an X-convergent series

x = k k Xk, (4.14)
kEK

and, with b,B positive and independent of x

b21x 2 2 2 x2 ' 2,
kCK kF x

then we will say that the Xk form a uniform decomposition of X. A special

case occurs when {xkl is a Riesz basis for X and Xk [xki so that for

each k

'k ck xk

for some complex scalars ck, k e K.

It is well known that if (Xk} C X is a strongly independent Schauder

basis for X, and if - is a representation of X' relative to the bilinear

form <X,&>, then there are unique k e such that

1,k=
5 <Xk, > =k,l e K.

When {xk) is a Riesz basis for X, { kl is a Riesz basis for E. The com-

parable notions for a uniform deco ,position are as follows. For each k we

have

X Xk, '

where Xk is the closed span of the Xj, I * k. Thus the'e is a unique decom-

position

x 'k k, 'k 'k' 'k Xk
Let

".,.,- -.--.-. -- -- "' ".
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Pk~kPkx = xk -

Then Pk is a bounded projection with range Xk and I-Pk is a bounded pro-

jection with range Xk. We define -k to be the range of the dual projection

Pk on and we define Ek to be the range of I-Pk in E. Clearly for

x Xk, c R k we have

<x,> = <Pkx,( - P ) > 2 (Pk-e)x,C> = <O,E> = 0.

and we have a similar relation for x e Xk, F c -k"

If for every x c X we are assured of the existence of a unique, con-

vergent representation (4.14), whether (4.15) holds or not, we will say that the

Xk  form a Schauder decomposition of X.

Let us now place Theorem 4.3 in the context which we have just developed.

For each integer k we define a linear operator, Pk, on Yp, by

I z (Cxt(R

(P k)(z) 1 IR 2z Ext(R ,k ).
pkpk

Setting

*k(z) = (Pk*)(z), k = 0,+i,+2, - - -

Y P Yp k = 0,±l,±2,-.. (4.17)
p,k kp

Tp,k consists of rational functions p(z) = O(z)/T(z), where o(z) and T(z)

are polynomials with deg o < deg T. Moreover, p(z)(o(z)/T(z)) is entire.

The dual operators defined on 4 will be called Pk. Their definition is

(z)= (P=)(z) p(z) 2-L J
(4.18)

z " Ext(Rkk). 0,-,-2, -

and we define
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. = k - 0,±I,±2. - --  (4.19)
p,k

The proof that *k, as defined here, has an entire analytic continuation lying

in 4, so that Op,k is a subspace of 0, follows much the same lines as

Theorem 2.3

, J It is easy to see that the operators Pk, Pk do not depend on the par-

ticular choice of p > a.

Proposition 4.4. The operators Pk, Pk are projections on 'p, 0, respec-

tively, and for

C o t ,k,

we have <*,i> = 0. Moreover, Pk is the dual operator to Pk in the sense

that for c t , * e T,

l <P , 0> fi <,PkP>-

The proofs are easy and essentially the same as those given in connection

with the operator calculus in [NJ and are omitted.

Theorem 4.5. Under the hypotheses of Theorem 4.3, taking 6, described prece-
ding (4.9), so that 6 > i, the spaces Tpk described by (4.16), (4.17)

form a uniform decomposition of the Hlbert space Vp.

Proof. We need a standard parametrization of the paths Rpk. Let the points

+
where Ck meets r and rp, respectively, be rp,k, rp,k. We construct a

map

from RO,0  onto Rp,k as follows:

. ,". ." -' '." . . . .''' ..' .,. ''. .-. ' .
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C + ink, E CO

+ "k- _ C-1

+
The vertical sides of Rp,k are rp,k, rp,k. We define

+ +
r + - r
pk-I - + + p

... P'o-rP,-i

Sp,k (r-r p- , r

p,0 rp,-1

r r

The construction of the paths Ck is such that the lengths of rp,k, rp,k,

i.e., r r - rp,k -4 and j rP,k - rp,k-i , always lie in the interval

(6,2L-61. It thus follows that tk( ) is bounded and bounded away from zero,

uniformly with respect to k and C c Co . Write

d 4 k 4 D. (4.20)

Let * be an element of T Then

I ( )d w (4.21)
zk(Z) = (Pk* )(z) = 2t JR , z-(

* . p,k

z c Ext(R ).
p,k

Setting

k d (c) dC

we can re-express (4.20) as (suppressing the argument r)

*( ,(k) dC
()= 2 JR - , z c Ext(Rpk). (4.22)

p,O

For a > p we will estimate

k '*k'o "l-_ J_ I *.() 2 dz.

Let us note that for fixed C c RpO, k(M), Ck-l( ) have the same real part

and

./ ., . .
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Then we estimate

irk(z) 2 1 dz i d 2 dz

ID r (R 2 IJr fd lZl

4 -a Oa p,O j PO
D, :2 o . k) -- d I d C dz

p,O 9-k

D2 2
D 2(R P) Go 2}

- 2( - Rtip { (r I ; l"dz d

2 2
D X(R d 

1
2w 2 ~f PIO )2c:dr 2 sup ~kJI (4.24)

p,k

where

*(z) - *(z)/p(z), e •

Clearly our task is to estimate the sum in (4.24). Let

- (k )

From (4.23) and the inequalities (3.28) there are positive numbers c,C such

that

-2 *2 2 -2 1;2

Then it is easy to see that

- i i2 Jr *(w) $()dw

2w a
7. *' ,' c (k ~i( 1 2 )1/2

.1
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and we conclude that

2 -22 ~ 2 (4.25)"?: k = 1'(k) 122 I I a

4 2

the constant c depending only on 6 > I, and not on the particular sequence

, Then from (4.24), (4.25) we have,

-I 
zYI I, p z *.(z) 2

2-2 SUP

D (R) c dr ze rpz) 2,... ) 4 _O ( a2+r2 ) inf IpWz I ") a0

ze:Rp,k

C2 112 (4.26)

To obtain an inequality in the other direction we note that

2 ,r f,(z) 2.dzH0r k- 2  k(z)I 21dz l

a I z I a d

-"kL i -p, 0  -k dz

-T_ Jr JRp JR / o 0  dz
4w a k-- Jt=-m pO (ZO

%. k-- -- (z-- k) t -

- ~ kCk)~(~t)k~tIdz
I J R Jr kk J. r d; de

4w- 4.2 ' k= - (z_k) k) __

1 R , r (Y k  C 't_ ) dz d=_

D 2(Re) 2 SUP 
2

4= 2 CC P-€ . €- k.' k* Since

*(~k2wi Ir .C-: .-. 0k(¢k) ~~P(Ck) -- "r -k d

• .
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we have

';i p P(Z)

k! 1 dr )1/2 ( p(z)
2i 2 in zeR I k a)F - (o-a) 2"r zc0R o

and then

supz

S 2 41 m dr '"oI (Z 2
_kE I kp-o. _ ,', •

k-- k 2 (a-a)2+ r 2  zCR -
p,k

But we know from (3.28) that

k 1 kk 1 2 - c 2

with c depending only on 6 > 1, and hence

24D 2 I(RP.0 ) 2  M *k(ck )  2
2 SUnn2 DL 1 1 j( m~ 2 ."--

S 4w2  CRp,0  k-- zk 10 o

D (R 0 ) 2  22

2 2 -2 sup I
D(1" dr pz) " 'k

Inf up2 I kP(z)-

P'.) 3,(-d r zeRa

2 _2 pk
= C1 J-- ka ' (4.28)

which completes the proof.

We nov address ourselves to the question as to when the individual fune-

t~ions (4.4) forma a Riea: basis for L2 [-r,ir]. The next theorem treats the case

wherein the cardinal function p is almost periodic and the zeros, zk, of p

are simple.

S.
4"] +"¢;,,''..+,.:.",,,. .""+-."""",. ' " ". ..,, . , , ,,.,.." . . """ " " " " " . . . . . ' "
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Theorem 4.6. Let the cardinal function p satisfy the hypotheses of Theorem

4.3 and let the zeros, zk, keK, of p be simple. Suppose there are positive

numbers r,R such that

r < p'(zk) R, k e K. (4.29)

- -. Then the functions

k(z) = -- 1 (4.30)

form a Riesz basis for 'p
- - p

Remark. The right hand inequality in (4.29) follows, of course, from the boun-

dedness of p in strips .Re(z) "

Proof of Theorem 4.6. From Theorem 4.3 the functions ezkt form a Schauder

basis for L2 [-w,w]; equivalently, the functions (4.30) form a Schauder basis

for Yp.

Now consider sequences of coefficients ak  k E K} E K, and define the

operator T : IK + Yp by

= ak

T(fak}) - ak*k(z). (4.31)

The domain of T consists of all (ak} for which the right hand side is con-

vergent in Tp. Thus T is densely defined (look at finite sequences), one to

one (by strong independence), and has dense range (by completeness). The

adjoint map is

T e 0 + ((zk) Ik K. (4.32)

Since

"' 4," - ". " """'- '" " " " " " " " ' " '" " - '° " ' " " " " : - '- ,'" . ''" ""- i
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~p(z)

. P'(zk) (Z-Zk)

is the unique element of 0 biorthogonal to Ok, i.e.

0, k XL

and *k(zt) - 6kI, it is easy to see that T* is defined on sums . bk~k(z)

and hence has dense range. That it is one to one follows from the proof of

Theorem 2.5.

Now, in fact, T and T* are both bounded. The boundedness of T*

follows from the fact that, for + e 4, e-wZo(z) lies in the Hardy space

-2 {Re(z) > p} and the fact that the zeros zk of an entire function * c 0.- k

have a maximum density; given L > 0, there is an M > 0 such that the number

of zeros zk in any rectangle Im(z-a) I , Re(z) f 4 p does not exceed M

when X > L. The Borel measure on Re(z) > -p defined by

P-. u(zk) - 1, zk C Zp I

a-- *u ({Re(z) > -p} - Z ) = 0,

-pp. . is then a Carleson measure ([L], [M]) and there is a B > 0 such that for

" *(zk) 2 B ,,, 2
% B 'km"- .# k _) P

i.e., T has range entirely included in 2 and is a bounded linear trans-

formation. But then T - (T*)* is a bounded linear transformation.

To show the Riesz basis property it is only necessary to establish that

2
T- 1  is bounded. We have seen from the boundedness of T that if (ak} c LK

then

NS%

d

! " * " " -" " a* " ' - - - .K z• :.' - . "Y "" -",%" .- " -',",. .'
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keK k p

and we have

Now let {bk } e IK, Then

(T*) -  k bkok(Z) b p(z)T kK kb} K P'(Zk)(z-zk)
the domain of (~

thedominof T*) 1being those {bk) c 1 2 for which the series on the right

0'. converges. But (cf. (2.20) for definition of P)

bk 
bk

b'zk k~z k 1

Since the numbers p'(zk) are bounded away from zero, the map

C~bk - ~bk
C{b k } - p,(zk)

., e. is bounded on IK" Thus

(T*)-l () - PT{P - pTC{bk},

i.e.,

(T*)- PTC.

Since P,T and C are all bounded, we conclude that (T*)- , and hence

T - 
,is bounded. Hence {(z-Zk) - I }  is the image of the standard orthonormal

basis for 12 under the bounded and boundedly invertible linear transfor-

mation T and we conclude that {(z-zk)- I is a Riesz basis for p.

'S

"*" ' " " 2 .20 "° 2 2 '..,"2 '2. '
•

Z ' €.. ' -, ,-. '-'''' - - -""""""""". -, - - . -, - . -.
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Corollary 4.7. Under the hypotheses of Theorem 4.6 the exponentials

(ezktl k C K} form a Riesz basis for L2 [-w,-R1.

This is an immediate consequence of the fact that for g c Lp(--.,-) such

.. that (g) = p, the norms IgIL2[_.,r] and I*Ip, or I11, are

equivalent, together with (z-zk) (ezkt).

% %

ILe

"a.. J"

N

a,.-.:

a,. ."

,4#.-.
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5. Concluding Remarks.

If we agree to refer to the Schauder bases of exponentials {ezkt}  for

L2[-N,w] associated with the zeros of a regular cardinal function p, as

defined in Section 1, as generating regular nonharmonic Fourier series, we

obtain a class of such series which overlaps, but is neither included in, nor

includes, the class of Kich series studied in the familiar literature on the

subject. In the classical literature, which includes, e.g. [C], [D], [E],

[F], [F), [J], [0], and numerous other contributions, the emphasis lies on

V. properties of the sequence (zk}; properties such as density, asymptotic gap,

proximity to the imaginary integers ik, etc., are the starting point. What

we call the cardinal function, p, is constructed as an infinite product

kcK k

ordinarily with grouping of terms to ensure convergence. The properties of p

are then deduced from the properties of the sequence {zk}.

The most frequently studied sequences {zkl (see, e.g. [E], (01) are

those imaginary sequences for which (letting K = the integers now)

- UPI z ki 4 " (5.1)

Not all of these nonharmonic Fourier series are encompassed in our framework.

The property of prime importance for p, referring to our framework now, is

that p itself should not lie in L2(rp) but, for each zero zk of P,

p(z)z)  p,(z )(z-zk

p Zk )z-Zk)

should lie in that space. This requirement, by itself, does not make p

bounded and bounded below on rp as in our work here. Roughly speaking, it

"" * .. ... t" , .. ., ,' , , ", - , ,, ,.....4. ,,- "-. . . .. :,, . , - . - ,, . ," .. " -..-. , -,.,.,
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admits functions p(z) whose growth on rp is like I z- with -V12 < < M2.

Such growth is obtained for sequences (5.1), e.g., if

z -ik(l - , k l +
2 k

-" Consequently, such cases are not covered by our theory as presented in this

paper; we hope to be able to modify our methods to cover them.

To give an idea of what our theory does encompass, we first need a

reasonably large class of cardinal functions which meet our conditions. Such a

class may be constructed as follows. Consider the distribution, d, with sup

port in [-r,w], defined by

d = 5(W) + c0 6(-W) + kl ck '( k) + f, (5.2)

where 6() is the Dirac distribution with support F, co * 0,

S.-. k

the points Ek are distinct points in (-wr) and f e Ll[-iw]. Using

results from (N] it may be shown that the Fourier transform of this distribu-

tion

p(z) = <d,eZ>, (5.3)

is almost periodic in any strip Re(z) P, p > 0, in the complex plane. It

is also easy to see that the conditions (1.3), (1.4) are met for some a > 0.

Thus p(z) as defined by (5.3) is a (regular) cardinal function as defined in

this paper.

A very interesting case, not covered in the classical treatments (C], (D],

and [E], but presented as an unproved theorem in [F], occurs when the series

in (5.2) is finite, say of length N-l, and

... . , . ' '.' ' ....... . . , .. .. ,.. .. .- , .. , , . . ", .. . . . ... . ..
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k.. , -' = -. N 2, =1,2,---,N-l• (5.4)

In this case

p)+ e c 0 eWZ N-I Ekz
p(z) 0 +k 1  k e +J' ez t f(t)dt

- p0 (z) + . e t f(t)dt. (5.5)

The zeros of po(z) then take the form zjt = log(?j) + 2rti, j 1,2,---,N,

I- < < , where the j are the zeros of the polynomial

N N-1
+ C + ... + C; + c o

and the principal value of the logarithm is intended. The zeros, zj£, of

p(z) are easily shown to be asymptotic to the zj£ as I zj£ + . Theorem 4.6

applies here if the zj£ are all simple zeros.

An important case also arises for p(z) having the form (5.5) but with the

-k not rationally related to w, so that, in particular, (5.4) does not

obtain. In this case we cannot give a simple asymptotic expression for the

zeros of p(z) and they may cluster in various complicated ways as z +

Nevertheless, p(z) remains almost a 3riodic in strips j Re(z) P p, P > 0,

and Theorem 4.5 applies to show that L2 [-,w) admits a uniform decomposition

* . in terms of finite dimensional subspaces spanned by generalized exponentials

associated with the zeros of p. This result has a number of uses in connection

with the theory of linear symmetric hyperbolic systems of partial differential

equations having wave speeds which are not rationally related (see, e.g. [P]).

It is clear, when p(z) has the form (5.3), that the associated genera-

lized exponentials are the exponential solutions of the scalar neutral

functional equation

,.-
%-
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w(t+w) + c w(t-n') +kY c W(t+4) + J f(s)w(t+s)ds = 0. (5.6)
k-1 k-

As such, these generalized exponentials, restricted to [-1,n], are the genera-

lized eigenfunctions of the operator

(Aw)(x) = w'(x) (5.7)

with (A) consisting of those functions w in the Sobolev space Hl[-7,,]

which satisfy the boundary condition

w(W) + c0 w(- () +I cv() -3 f(s)w(s)ds = 0. (5.8

It is well known that when co * 0, which we assume, the operator (5.7) genera-

tes a strongly continuous group of bounded operators on L2 [-,,]. This group

has been studied in [Q], where it has also been shown that there is a very

strong connection between any exponential Riesz basis for L2 [-n,w] and a

corresponding group of restricted shifts, or translations. This is another

topic which we hope to return to at another time.

In this connection it is, of course clear that our methods are quite simi-

lar to the methods used for studying the spectral properties of differential

operators which involve various contour integration methods applied to the

resolvent operator (zI-A) 1  (see [R], e.g.). The meromorphic function

1/p(z) plays much the same role as the resolvent does in that theory. In fact

it is shown in (Q] that for p(z) having the form (5.3), and A the operator

(5.7) with domain characterized by the boundary condition (5.8), that for

* (w) e T, i e have

*(z) ((zI-A)-1w)(0).

If one forms the distributional solution w(t) of

V V
4. 4p ,- 

",,----.-
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w(t+1) + C W(t-') 4+ c cw(t+) i-t + f(s)w(t+s)ds 6
0 k- T (0)

it may be seen that 1/p(z) is the Laplace transform of w. This leads to the

formula.

-((zI A)-)()

if (zI-A)-l is appropriately extended to 1F[i~r, which includes the

distribution 6(o).

--:p-
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